用电子逃离辐射伤害?

Ray F Egerton
{"title":"用电子逃离辐射伤害?","authors":"Ray F Egerton","doi":"10.1186/s40679-014-0001-3","DOIUrl":null,"url":null,"abstract":"<p>The diffract-before-destroy method, using 50- to 100-fs x-ray pulses from a free-electron laser, was designed to determine the three-dimensional structure of biological macromolecules in close to their natural state. Here we explore the possibility of using short electron pulses for the same purpose and the related question of whether radiation damage can be outrun with electrons. Major problems include Coulomb repulsion within the incident beam and the need for high lateral coherence, difficulties that are discussed in terms of existing and future electron sources. Using longer pulses of electrons appears to make the attainment of near-atomic resolution more feasible, at least for nanocrystalline particles, whereas obtaining this information from single-molecule particles in an aqueous environment seems a more distant goal. We also consider the possibility of serial crystallography using a liquid jet injector with a continuous electron beam in a transmission electron microscope (TEM).</p>","PeriodicalId":460,"journal":{"name":"Advanced Structural and Chemical Imaging","volume":"1 1","pages":""},"PeriodicalIF":3.5600,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40679-014-0001-3","citationCount":"39","resultStr":"{\"title\":\"Outrun radiation damage with electrons?\",\"authors\":\"Ray F Egerton\",\"doi\":\"10.1186/s40679-014-0001-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The diffract-before-destroy method, using 50- to 100-fs x-ray pulses from a free-electron laser, was designed to determine the three-dimensional structure of biological macromolecules in close to their natural state. Here we explore the possibility of using short electron pulses for the same purpose and the related question of whether radiation damage can be outrun with electrons. Major problems include Coulomb repulsion within the incident beam and the need for high lateral coherence, difficulties that are discussed in terms of existing and future electron sources. Using longer pulses of electrons appears to make the attainment of near-atomic resolution more feasible, at least for nanocrystalline particles, whereas obtaining this information from single-molecule particles in an aqueous environment seems a more distant goal. We also consider the possibility of serial crystallography using a liquid jet injector with a continuous electron beam in a transmission electron microscope (TEM).</p>\",\"PeriodicalId\":460,\"journal\":{\"name\":\"Advanced Structural and Chemical Imaging\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5600,\"publicationDate\":\"2015-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40679-014-0001-3\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Structural and Chemical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40679-014-0001-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Structural and Chemical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40679-014-0001-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 39

摘要

破坏前衍射法使用来自自由电子激光器的50至100 fs x射线脉冲,旨在确定接近其自然状态的生物大分子的三维结构。在这里,我们探讨了使用短电子脉冲的可能性,以达到同样的目的,并探讨了辐射损伤是否可以用电子来逃逸的相关问题。主要问题包括入射光束中的库仑斥力和对高横向相干性的需要,这些困难在现有和未来的电子源方面进行了讨论。使用更长的电子脉冲似乎使获得近原子分辨率更可行,至少对纳米晶体粒子来说是这样,而从水环境中的单分子粒子中获得这一信息似乎是一个更遥远的目标。我们还考虑了在透射电子显微镜(TEM)中使用连续电子束的液体喷射喷射器进行连续晶体学的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Outrun radiation damage with electrons?

The diffract-before-destroy method, using 50- to 100-fs x-ray pulses from a free-electron laser, was designed to determine the three-dimensional structure of biological macromolecules in close to their natural state. Here we explore the possibility of using short electron pulses for the same purpose and the related question of whether radiation damage can be outrun with electrons. Major problems include Coulomb repulsion within the incident beam and the need for high lateral coherence, difficulties that are discussed in terms of existing and future electron sources. Using longer pulses of electrons appears to make the attainment of near-atomic resolution more feasible, at least for nanocrystalline particles, whereas obtaining this information from single-molecule particles in an aqueous environment seems a more distant goal. We also consider the possibility of serial crystallography using a liquid jet injector with a continuous electron beam in a transmission electron microscope (TEM).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Structural and Chemical Imaging
Advanced Structural and Chemical Imaging Medicine-Radiology, Nuclear Medicine and Imaging
自引率
0.00%
发文量
0
期刊最新文献
Detection of defects in atomic-resolution images of materials using cycle analysis Imaging of polymer:fullerene bulk-heterojunctions in a scanning electron microscope: methodology aspects and nanomorphology by correlative SEM and STEM mpfit: a robust method for fitting atomic resolution images with multiple Gaussian peaks Investigation of hole-free phase plate performance in transmission electron microscopy under different operation conditions by experiments and simulations Optimal principal component analysis of STEM XEDS spectrum images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1