脉冲电场参数对含磷酸盐溶液电渗析脱盐平均电流密度的影响

IF 2 Q4 CHEMISTRY, PHYSICAL Membranes and Membrane Technologies Pub Date : 2022-12-26 DOI:10.1134/S2517751622060075
O. A. Rybalkina, K. V. Solonchenko, D. Yu. Butylskii, V. V. Nikonenko, N. D. Pismenskaya
{"title":"脉冲电场参数对含磷酸盐溶液电渗析脱盐平均电流密度的影响","authors":"O. A. Rybalkina,&nbsp;K. V. Solonchenko,&nbsp;D. Yu. Butylskii,&nbsp;V. V. Nikonenko,&nbsp;N. D. Pismenskaya","doi":"10.1134/S2517751622060075","DOIUrl":null,"url":null,"abstract":"<p>The effect of pulsed electric field (PEF) parameters on the period-average current densities in the electrodialysis desalination of sodium dihydrophosphate solutions has been studied for the first time. Ir has been shown that, in the case of sodium dihydrophosphate solutions, the PEF effect regularities are generally the same as for the solutions of strong electrolytes. Using the visualization of electroconvective flows in a lean solution near the surface of an anion-exchange membrane, it has been established that the observed distinction in the behavior of membrane systems is caused by weak electroconvection in phosphate-containing solutions. The hypothesis that another reason for the observed distinctions is the effect of a pulsed electric field on the deprotonation of <span>\\({{{\\text{H}}}_{{\\text{2}}}}{\\text{PO}}_{4}^{ - }\\)</span> anions entering the volume of an anion-exchange membrane is put forward.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"4 6","pages":"385 - 397"},"PeriodicalIF":2.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S2517751622060075.pdf","citationCount":"2","resultStr":"{\"title\":\"Effect of the Parameters of Pulsed Electric Fields on the Average Current Density in the Electrodialysis Desalination of a Phosphate-Containing Solution\",\"authors\":\"O. A. Rybalkina,&nbsp;K. V. Solonchenko,&nbsp;D. Yu. Butylskii,&nbsp;V. V. Nikonenko,&nbsp;N. D. Pismenskaya\",\"doi\":\"10.1134/S2517751622060075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of pulsed electric field (PEF) parameters on the period-average current densities in the electrodialysis desalination of sodium dihydrophosphate solutions has been studied for the first time. Ir has been shown that, in the case of sodium dihydrophosphate solutions, the PEF effect regularities are generally the same as for the solutions of strong electrolytes. Using the visualization of electroconvective flows in a lean solution near the surface of an anion-exchange membrane, it has been established that the observed distinction in the behavior of membrane systems is caused by weak electroconvection in phosphate-containing solutions. The hypothesis that another reason for the observed distinctions is the effect of a pulsed electric field on the deprotonation of <span>\\\\({{{\\\\text{H}}}_{{\\\\text{2}}}}{\\\\text{PO}}_{4}^{ - }\\\\)</span> anions entering the volume of an anion-exchange membrane is put forward.</p>\",\"PeriodicalId\":700,\"journal\":{\"name\":\"Membranes and Membrane Technologies\",\"volume\":\"4 6\",\"pages\":\"385 - 397\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S2517751622060075.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes and Membrane Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2517751622060075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751622060075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

摘要

首次研究了脉冲电场(PEF)参数对二氢磷酸钠溶液电渗析脱盐过程中周期平均电流密度的影响。研究表明,在磷酸二氢钠溶液中,PEF效应规律与强电解质溶液大致相同。利用阴离子交换膜表面附近的稀薄溶液中的电对流流动的可视化,已经确定了所观察到的膜系统行为的区别是由含磷酸盐溶液中的弱电对流引起的。提出了一种假设,即所观察到的差异的另一个原因是脉冲电场对进入阴离子交换膜体积的\({{{\text{H}}}_{{\text{2}}}}{\text{PO}}_{4}^{ - }\)阴离子的去质子化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of the Parameters of Pulsed Electric Fields on the Average Current Density in the Electrodialysis Desalination of a Phosphate-Containing Solution

The effect of pulsed electric field (PEF) parameters on the period-average current densities in the electrodialysis desalination of sodium dihydrophosphate solutions has been studied for the first time. Ir has been shown that, in the case of sodium dihydrophosphate solutions, the PEF effect regularities are generally the same as for the solutions of strong electrolytes. Using the visualization of electroconvective flows in a lean solution near the surface of an anion-exchange membrane, it has been established that the observed distinction in the behavior of membrane systems is caused by weak electroconvection in phosphate-containing solutions. The hypothesis that another reason for the observed distinctions is the effect of a pulsed electric field on the deprotonation of \({{{\text{H}}}_{{\text{2}}}}{\text{PO}}_{4}^{ - }\) anions entering the volume of an anion-exchange membrane is put forward.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
31.20%
发文量
38
期刊介绍: The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.
期刊最新文献
Comparison of Homogeneous Anion-Exchange Membrane Based on Copolymer of N,N-Diallyl-N,N-dimethylammonium Chloride and Commercial Anion-Exchange Membranes in Electrodialysis Processing of Dilute Sodium Chloride Solutions Concentration Polarization in Membrane Systems Effect of Nature and Charge of Counterions and Co-Ions on Electrotransport Properties of Heterogeneous Anion Exchange Membranes Characterization of New Experimental Materials for Hemodialysis Membranes and Simulation of Urea Dialysis Process with Their Use Selective Extraction of Lithium Cations from Mixture of Alkali Metal Chlorides Using Electrobaromembrane Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1