Pao-Kang Chen, Ian Briggs, Chaohan Cui, Liang Zhang, Manav Shah, Linran Fan
{"title":"适用于极化以打破纳米光子铌酸锂波导的非线性效率限制。","authors":"Pao-Kang Chen, Ian Briggs, Chaohan Cui, Liang Zhang, Manav Shah, Linran Fan","doi":"10.1038/s41565-023-01525-w","DOIUrl":null,"url":null,"abstract":"Nonlinear frequency mixing is a method to extend the wavelength range of optical sources with applications in quantum information and photonic signal processing. Lithium niobate with periodic poling is the most widely used material for frequency mixing due to its strong second-order nonlinear coefficient. The recent development using nanophotonic lithium niobate waveguides promises to improve nonlinear efficiencies by orders of magnitude thanks to subwavelength optical confinement. However, the intrinsic nanoscale inhomogeneity of nanophotonic lithium niobate waveguides limits the coherent interaction length, leading to low nonlinear efficiencies. Here we show improved second-order nonlinear efficiency in nanophotonic lithium niobate waveguides that breaks the limit imposed by nanoscale inhomogeneity. This is realized by developing the adapted poling approach to eliminate the impact of nanoscale inhomogeneity. We realize an overall second-harmonic efficiency of 104% W−1 (without cavity enhancement), approaching the theoretical performance for nanophotonic lithium niobate waveguides. The ideal square dependence of the nonlinear efficiency on the waveguide length is recovered. Phase-matching bandwidths and temperature tuneability are improved through dispersion engineering. We finally demonstrate a conversion ratio from pump to second-harmonic power greater than 80% in a single-pass configuration with pump power as low as 20 mW. Our work therefore breaks the trade-off between the conversion ratio and pump power, offering a potential solution for highly efficient and scalable nonlinear-optical sources, amplifiers and converters. A major limiting factor for nonlinear efficiencies in lithium niobate waveguides, nanoscale thickness inhomogeneity, has been tackled using a fabrication approach called adapted poling.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 1","pages":"44-50"},"PeriodicalIF":38.1000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides\",\"authors\":\"Pao-Kang Chen, Ian Briggs, Chaohan Cui, Liang Zhang, Manav Shah, Linran Fan\",\"doi\":\"10.1038/s41565-023-01525-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear frequency mixing is a method to extend the wavelength range of optical sources with applications in quantum information and photonic signal processing. Lithium niobate with periodic poling is the most widely used material for frequency mixing due to its strong second-order nonlinear coefficient. The recent development using nanophotonic lithium niobate waveguides promises to improve nonlinear efficiencies by orders of magnitude thanks to subwavelength optical confinement. However, the intrinsic nanoscale inhomogeneity of nanophotonic lithium niobate waveguides limits the coherent interaction length, leading to low nonlinear efficiencies. Here we show improved second-order nonlinear efficiency in nanophotonic lithium niobate waveguides that breaks the limit imposed by nanoscale inhomogeneity. This is realized by developing the adapted poling approach to eliminate the impact of nanoscale inhomogeneity. We realize an overall second-harmonic efficiency of 104% W−1 (without cavity enhancement), approaching the theoretical performance for nanophotonic lithium niobate waveguides. The ideal square dependence of the nonlinear efficiency on the waveguide length is recovered. Phase-matching bandwidths and temperature tuneability are improved through dispersion engineering. We finally demonstrate a conversion ratio from pump to second-harmonic power greater than 80% in a single-pass configuration with pump power as low as 20 mW. Our work therefore breaks the trade-off between the conversion ratio and pump power, offering a potential solution for highly efficient and scalable nonlinear-optical sources, amplifiers and converters. A major limiting factor for nonlinear efficiencies in lithium niobate waveguides, nanoscale thickness inhomogeneity, has been tackled using a fabrication approach called adapted poling.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"19 1\",\"pages\":\"44-50\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41565-023-01525-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-023-01525-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides
Nonlinear frequency mixing is a method to extend the wavelength range of optical sources with applications in quantum information and photonic signal processing. Lithium niobate with periodic poling is the most widely used material for frequency mixing due to its strong second-order nonlinear coefficient. The recent development using nanophotonic lithium niobate waveguides promises to improve nonlinear efficiencies by orders of magnitude thanks to subwavelength optical confinement. However, the intrinsic nanoscale inhomogeneity of nanophotonic lithium niobate waveguides limits the coherent interaction length, leading to low nonlinear efficiencies. Here we show improved second-order nonlinear efficiency in nanophotonic lithium niobate waveguides that breaks the limit imposed by nanoscale inhomogeneity. This is realized by developing the adapted poling approach to eliminate the impact of nanoscale inhomogeneity. We realize an overall second-harmonic efficiency of 104% W−1 (without cavity enhancement), approaching the theoretical performance for nanophotonic lithium niobate waveguides. The ideal square dependence of the nonlinear efficiency on the waveguide length is recovered. Phase-matching bandwidths and temperature tuneability are improved through dispersion engineering. We finally demonstrate a conversion ratio from pump to second-harmonic power greater than 80% in a single-pass configuration with pump power as low as 20 mW. Our work therefore breaks the trade-off between the conversion ratio and pump power, offering a potential solution for highly efficient and scalable nonlinear-optical sources, amplifiers and converters. A major limiting factor for nonlinear efficiencies in lithium niobate waveguides, nanoscale thickness inhomogeneity, has been tackled using a fabrication approach called adapted poling.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.