通过自动检查任务提高放射肿瘤成像实习生病例多样性:来自三级癌症中心的回顾性研究。

IF 5.6 Q1 ONCOLOGY Radiology. Imaging cancer Pub Date : 2023-11-01 DOI:10.1148/rycan.230035
Anton S Becker, Jeeban P Das, Sungmin Woo, Rocio Perez-Johnston, Hebert Alberto Vargas
{"title":"通过自动检查任务提高放射肿瘤成像实习生病例多样性:来自三级癌症中心的回顾性研究。","authors":"Anton S Becker, Jeeban P Das, Sungmin Woo, Rocio Perez-Johnston, Hebert Alberto Vargas","doi":"10.1148/rycan.230035","DOIUrl":null,"url":null,"abstract":"<p><p>In a retrospective single-center study, the authors assessed the efficacy of an automated imaging examination assignment system for enhancing the diversity of subspecialty examinations reported by oncologic imaging fellows. The study aimed to mitigate traditional biases of manual case selection and ensure equitable exposure to various case types. Methods included evaluating the proportion of \"uncommon\" to \"common\" cases reported by fellows before and after system implementation and measuring the weekly Shannon Diversity Index to determine case distribution equity. The proportion of reported uncommon cases more than doubled from 8.6% to 17.7% in total, at the cost of a concurrent 9.0% decrease in common cases from 91.3% to 82.3%. The weekly Shannon Diversity Index per fellow increased significantly from 0.66 (95% CI: 0.65, 0.67) to 0.74 (95% CI: 0.72, 0.75; <i>P</i> < .001), confirming a more balanced case distribution among fellows after introduction of the automatic assignment. © RSNA, 2023 <b>Keywords:</b> Computer Applications, Education, Fellows, Informatics, MRI, Oncologic Imaging.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698617/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving Radiology Oncologic Imaging Trainee Case Diversity through Automatic Examination Assignment: Retrospective Study from a Tertiary Cancer Center.\",\"authors\":\"Anton S Becker, Jeeban P Das, Sungmin Woo, Rocio Perez-Johnston, Hebert Alberto Vargas\",\"doi\":\"10.1148/rycan.230035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a retrospective single-center study, the authors assessed the efficacy of an automated imaging examination assignment system for enhancing the diversity of subspecialty examinations reported by oncologic imaging fellows. The study aimed to mitigate traditional biases of manual case selection and ensure equitable exposure to various case types. Methods included evaluating the proportion of \\\"uncommon\\\" to \\\"common\\\" cases reported by fellows before and after system implementation and measuring the weekly Shannon Diversity Index to determine case distribution equity. The proportion of reported uncommon cases more than doubled from 8.6% to 17.7% in total, at the cost of a concurrent 9.0% decrease in common cases from 91.3% to 82.3%. The weekly Shannon Diversity Index per fellow increased significantly from 0.66 (95% CI: 0.65, 0.67) to 0.74 (95% CI: 0.72, 0.75; <i>P</i> < .001), confirming a more balanced case distribution among fellows after introduction of the automatic assignment. © RSNA, 2023 <b>Keywords:</b> Computer Applications, Education, Fellows, Informatics, MRI, Oncologic Imaging.</p>\",\"PeriodicalId\":20786,\"journal\":{\"name\":\"Radiology. Imaging cancer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698617/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology. Imaging cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/rycan.230035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology. Imaging cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/rycan.230035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在一项回顾性单中心研究中,作者评估了自动化影像学检查分配系统在增强肿瘤学影像学研究员报告的亚专业检查多样性方面的有效性。这项研究旨在减轻手动病例选择的传统偏见,并确保公平地接触各种病例类型。方法包括评估研究员在系统实施前后报告的“罕见”与“常见”病例的比例,并测量每周的Shannon多样性指数,以确定病例分布的公平性。报告的不常见病例的比例增加了一倍多,从8.6%增加到17.7%,代价是普通病例同时从91.3%减少到82.3%,减少了9.0%。每个同事的每周香农多样性指数从0.66(95%CI:0.65,0.67)显著增加到0.74(95%CI:0.72,0.75;P<.001),确认在引入自动分配后,研究员之间的病例分布更加平衡。©RSNA,2023关键词:计算机应用、教育、研究员、信息学、MRI、肿瘤成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Radiology Oncologic Imaging Trainee Case Diversity through Automatic Examination Assignment: Retrospective Study from a Tertiary Cancer Center.

In a retrospective single-center study, the authors assessed the efficacy of an automated imaging examination assignment system for enhancing the diversity of subspecialty examinations reported by oncologic imaging fellows. The study aimed to mitigate traditional biases of manual case selection and ensure equitable exposure to various case types. Methods included evaluating the proportion of "uncommon" to "common" cases reported by fellows before and after system implementation and measuring the weekly Shannon Diversity Index to determine case distribution equity. The proportion of reported uncommon cases more than doubled from 8.6% to 17.7% in total, at the cost of a concurrent 9.0% decrease in common cases from 91.3% to 82.3%. The weekly Shannon Diversity Index per fellow increased significantly from 0.66 (95% CI: 0.65, 0.67) to 0.74 (95% CI: 0.72, 0.75; P < .001), confirming a more balanced case distribution among fellows after introduction of the automatic assignment. © RSNA, 2023 Keywords: Computer Applications, Education, Fellows, Informatics, MRI, Oncologic Imaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
2.30%
发文量
0
期刊最新文献
Multifrequency MR Elastography for Tumor Stiffness Outperforms Conventional Imaging and Clinical Variables in Determining Lymphovascular Space Invasion in Endometrial Cancer. Assessing the Value of 68Ga-FAPI PET/CT in Gastric Mucinous Adenocarcinoma or Signet Ring Cell Carcinoma. External Validation of a Previously Developed Deep Learning-based Prostate Lesion Detection Algorithm on Paired External and In-House Biparametric MRI Scans. Mathematical 3D Liver Model for Surgical versus Ablative Therapy Treatment Planning for Colorectal Liver Metastases: Recommendations from the COLLISION and COLDFIRE Trial Expert Panels. A New Acquisition Protocol for Optimized Dynamic Susceptibility Perfusion Imaging of Brain Tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1