美国宇航局冰桥行动的科学遗产

IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Reviews of Geophysics Pub Date : 2021-05-03 DOI:10.1029/2020RG000712
Joseph A. MacGregor, Linette N. Boisvert, Brooke Medley, Alek A. Petty, Jeremy P. Harbeck, Robin E. Bell, J. Bryan Blair, Edward Blanchard-Wrigglesworth, Ellen M. Buckley, Michael S. Christoffersen, James R. Cochran, Beáta M. Csathó, Eugenia L. De Marco, RoseAnne T. Dominguez, Mark A. Fahnestock, Sinéad L. Farrell, S. Prasad Gogineni, Jamin S. Greenbaum, Christy M. Hansen, Michelle A. Hofton, John W. Holt, Kenneth C. Jezek, Lora S. Koenig, Nathan T. Kurtz, Ronald Kwok, Christopher F. Larsen, Carlton J. Leuschen, Caitlin D. Locke, Serdar S. Manizade, Seelye Martin, Thomas A. Neumann, Sophie M.J. Nowicki, John D. Paden, Jacqueline A. Richter-Menge, Eric J. Rignot, Fernando Rodríguez-Morales, Matthew R. Siegfried, Benjamin E. Smith, John G. Sonntag, Michael Studinger, Kirsty J. Tinto, Martin Truffer, Thomas P. Wagner, John E. Woods, Duncan A. Young, James K. Yungel
{"title":"美国宇航局冰桥行动的科学遗产","authors":"Joseph A. MacGregor,&nbsp;Linette N. Boisvert,&nbsp;Brooke Medley,&nbsp;Alek A. Petty,&nbsp;Jeremy P. Harbeck,&nbsp;Robin E. Bell,&nbsp;J. Bryan Blair,&nbsp;Edward Blanchard-Wrigglesworth,&nbsp;Ellen M. Buckley,&nbsp;Michael S. Christoffersen,&nbsp;James R. Cochran,&nbsp;Beáta M. Csathó,&nbsp;Eugenia L. De Marco,&nbsp;RoseAnne T. Dominguez,&nbsp;Mark A. Fahnestock,&nbsp;Sinéad L. Farrell,&nbsp;S. Prasad Gogineni,&nbsp;Jamin S. Greenbaum,&nbsp;Christy M. Hansen,&nbsp;Michelle A. Hofton,&nbsp;John W. Holt,&nbsp;Kenneth C. Jezek,&nbsp;Lora S. Koenig,&nbsp;Nathan T. Kurtz,&nbsp;Ronald Kwok,&nbsp;Christopher F. Larsen,&nbsp;Carlton J. Leuschen,&nbsp;Caitlin D. Locke,&nbsp;Serdar S. Manizade,&nbsp;Seelye Martin,&nbsp;Thomas A. Neumann,&nbsp;Sophie M.J. Nowicki,&nbsp;John D. Paden,&nbsp;Jacqueline A. Richter-Menge,&nbsp;Eric J. Rignot,&nbsp;Fernando Rodríguez-Morales,&nbsp;Matthew R. Siegfried,&nbsp;Benjamin E. Smith,&nbsp;John G. Sonntag,&nbsp;Michael Studinger,&nbsp;Kirsty J. Tinto,&nbsp;Martin Truffer,&nbsp;Thomas P. Wagner,&nbsp;John E. Woods,&nbsp;Duncan A. Young,&nbsp;James K. Yungel","doi":"10.1029/2020RG000712","DOIUrl":null,"url":null,"abstract":"<p>The National Aeronautics and Space Administration (NASA)’s Operation IceBridge (OIB) was a 13-year (2009–2021) airborne mission to survey land and sea ice across the Arctic, Antarctic, and Alaska. Here, we review OIB’s goals, instruments, campaigns, key scientific results, and implications for future investigations of the cryosphere. OIB’s primary goal was to use airborne laser altimetry to bridge the gap in fine-resolution elevation measurements of ice from space between the conclusion of NASA’s Ice, Cloud, and land Elevation Satellite (ICESat; 2003–2009) and its follow-on, ICESat-2 (launched 2018). Additional scientific requirements were intended to contextualize observed elevation changes using a multisensor suite of radar sounders, gravimeters, magnetometers, and cameras. Using 15 different aircraft, OIB conducted 968 science flights, of which 42% were repeat surveys of land ice, 42% were surveys of previously unmapped terrain across the Greenland and Antarctic ice sheets, Arctic ice caps, and Alaskan glaciers, and 16% were surveys of sea ice. The combination of an expansive instrument suite and breadth of surveys enabled numerous fundamental advances in our understanding of the Earth’s cryosphere. For land ice, OIB dramatically improved knowledge of interannual outlet-glacier variability, ice-sheet, and outlet-glacier thicknesses, snowfall rates on ice sheets, fjord and sub-ice-shelf bathymetry, and ice-sheet hydrology. Unanticipated discoveries included a reliable method for constraining the thickness within difficult-to-sound incised troughs beneath ice sheets, the extent of the firn aquifer within the Greenland Ice Sheet, the vulnerability of many Greenland and Antarctic outlet glaciers to ocean-driven melting at their grounding zones, and the dominance of surface-melt-driven mass loss of Alaskan glaciers. For sea ice, OIB significantly advanced our understanding of spatiotemporal variability in sea ice freeboard and its snow cover, especially through combined analysis of fine-resolution altimetry, visible imagery, and snow radar measurements of the overlying snow thickness. Such analyses led to the unanticipated discovery of an interdecadal decrease in snow thickness on Arctic sea ice and numerous opportunities to validate sea ice freeboards from satellite radar altimetry. While many of its data sets have yet to be fully explored, OIB’s scientific legacy has already demonstrated the value of sustained investment in reliable airborne platforms, airborne instrument development, interagency and international collaboration, and open and rapid data access to advance our understanding of Earth’s remote polar regions and their role in the Earth system.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"59 2","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2020RG000712","citationCount":"46","resultStr":"{\"title\":\"The Scientific Legacy of NASA’s Operation IceBridge\",\"authors\":\"Joseph A. MacGregor,&nbsp;Linette N. Boisvert,&nbsp;Brooke Medley,&nbsp;Alek A. Petty,&nbsp;Jeremy P. Harbeck,&nbsp;Robin E. Bell,&nbsp;J. Bryan Blair,&nbsp;Edward Blanchard-Wrigglesworth,&nbsp;Ellen M. Buckley,&nbsp;Michael S. Christoffersen,&nbsp;James R. Cochran,&nbsp;Beáta M. Csathó,&nbsp;Eugenia L. De Marco,&nbsp;RoseAnne T. Dominguez,&nbsp;Mark A. Fahnestock,&nbsp;Sinéad L. Farrell,&nbsp;S. Prasad Gogineni,&nbsp;Jamin S. Greenbaum,&nbsp;Christy M. Hansen,&nbsp;Michelle A. Hofton,&nbsp;John W. Holt,&nbsp;Kenneth C. Jezek,&nbsp;Lora S. Koenig,&nbsp;Nathan T. Kurtz,&nbsp;Ronald Kwok,&nbsp;Christopher F. Larsen,&nbsp;Carlton J. Leuschen,&nbsp;Caitlin D. Locke,&nbsp;Serdar S. Manizade,&nbsp;Seelye Martin,&nbsp;Thomas A. Neumann,&nbsp;Sophie M.J. Nowicki,&nbsp;John D. Paden,&nbsp;Jacqueline A. Richter-Menge,&nbsp;Eric J. Rignot,&nbsp;Fernando Rodríguez-Morales,&nbsp;Matthew R. Siegfried,&nbsp;Benjamin E. Smith,&nbsp;John G. Sonntag,&nbsp;Michael Studinger,&nbsp;Kirsty J. Tinto,&nbsp;Martin Truffer,&nbsp;Thomas P. Wagner,&nbsp;John E. Woods,&nbsp;Duncan A. Young,&nbsp;James K. Yungel\",\"doi\":\"10.1029/2020RG000712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The National Aeronautics and Space Administration (NASA)’s Operation IceBridge (OIB) was a 13-year (2009–2021) airborne mission to survey land and sea ice across the Arctic, Antarctic, and Alaska. Here, we review OIB’s goals, instruments, campaigns, key scientific results, and implications for future investigations of the cryosphere. OIB’s primary goal was to use airborne laser altimetry to bridge the gap in fine-resolution elevation measurements of ice from space between the conclusion of NASA’s Ice, Cloud, and land Elevation Satellite (ICESat; 2003–2009) and its follow-on, ICESat-2 (launched 2018). Additional scientific requirements were intended to contextualize observed elevation changes using a multisensor suite of radar sounders, gravimeters, magnetometers, and cameras. Using 15 different aircraft, OIB conducted 968 science flights, of which 42% were repeat surveys of land ice, 42% were surveys of previously unmapped terrain across the Greenland and Antarctic ice sheets, Arctic ice caps, and Alaskan glaciers, and 16% were surveys of sea ice. The combination of an expansive instrument suite and breadth of surveys enabled numerous fundamental advances in our understanding of the Earth’s cryosphere. For land ice, OIB dramatically improved knowledge of interannual outlet-glacier variability, ice-sheet, and outlet-glacier thicknesses, snowfall rates on ice sheets, fjord and sub-ice-shelf bathymetry, and ice-sheet hydrology. Unanticipated discoveries included a reliable method for constraining the thickness within difficult-to-sound incised troughs beneath ice sheets, the extent of the firn aquifer within the Greenland Ice Sheet, the vulnerability of many Greenland and Antarctic outlet glaciers to ocean-driven melting at their grounding zones, and the dominance of surface-melt-driven mass loss of Alaskan glaciers. For sea ice, OIB significantly advanced our understanding of spatiotemporal variability in sea ice freeboard and its snow cover, especially through combined analysis of fine-resolution altimetry, visible imagery, and snow radar measurements of the overlying snow thickness. Such analyses led to the unanticipated discovery of an interdecadal decrease in snow thickness on Arctic sea ice and numerous opportunities to validate sea ice freeboards from satellite radar altimetry. While many of its data sets have yet to be fully explored, OIB’s scientific legacy has already demonstrated the value of sustained investment in reliable airborne platforms, airborne instrument development, interagency and international collaboration, and open and rapid data access to advance our understanding of Earth’s remote polar regions and their role in the Earth system.</p>\",\"PeriodicalId\":21177,\"journal\":{\"name\":\"Reviews of Geophysics\",\"volume\":\"59 2\",\"pages\":\"\"},\"PeriodicalIF\":25.2000,\"publicationDate\":\"2021-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2020RG000712\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2020RG000712\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2020RG000712","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 46

摘要

美国国家航空航天局(NASA)的冰桥行动(OIB)是一项为期13年(2009-2021)的机载任务,旨在调查北极、南极和阿拉斯加的陆地和海冰。在这里,我们回顾了OIB的目标、仪器、活动、关键科学成果以及对未来冰冻圈研究的影响。OIB的主要目标是利用机载激光测高来弥补NASA的冰、云和陆地高程卫星(ICESat;2003-2009年)及其后续卫星ICESat-2(2018年发射)。额外的科学要求旨在利用雷达测深仪、重力仪、磁力计和相机的多传感器套件来分析观测到的高程变化。OIB使用15架不同的飞机进行了968次科学飞行,其中42%是对陆地冰的重复调查,42%是对格陵兰岛和南极冰盖、北极冰盖和阿拉斯加冰川等以前未绘制的地形的调查,16%是对海冰的调查。一套庞大的仪器和广泛的调查使我们对地球冰冻圈的了解取得了许多根本性的进展。对于陆冰,OIB极大地提高了对年际出口-冰川变化、冰盖和出口-冰川厚度、冰盖降雪率、峡湾和亚冰架测深以及冰盖水文的认识。意料之外的发现包括一种可靠的方法,用于限制冰盖下难以听清的切割槽的厚度,格陵兰冰盖内坚硬的含水层的范围,许多格陵兰和南极出口冰川在其接地区受到海洋驱动融化的脆弱性,以及阿拉斯加冰川表面融化驱动的质量损失占主导地位。对于海冰,OIB显著提高了我们对海冰干舷及其积雪的时空变化的理解,特别是通过对上覆雪厚度的精细分辨率测高、可见光图像和雪雷达测量的综合分析。这样的分析导致了意想不到的发现,即北极海冰上积雪厚度的年代际减少,以及通过卫星雷达测高验证海冰干舷的许多机会。虽然其许多数据集尚未得到充分探索,但OIB的科学遗产已经证明了在可靠的机载平台,机载仪器开发,机构间和国际合作以及开放和快速的数据访问方面持续投资的价值,以促进我们对地球偏远极地地区及其在地球系统中的作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Scientific Legacy of NASA’s Operation IceBridge

The National Aeronautics and Space Administration (NASA)’s Operation IceBridge (OIB) was a 13-year (2009–2021) airborne mission to survey land and sea ice across the Arctic, Antarctic, and Alaska. Here, we review OIB’s goals, instruments, campaigns, key scientific results, and implications for future investigations of the cryosphere. OIB’s primary goal was to use airborne laser altimetry to bridge the gap in fine-resolution elevation measurements of ice from space between the conclusion of NASA’s Ice, Cloud, and land Elevation Satellite (ICESat; 2003–2009) and its follow-on, ICESat-2 (launched 2018). Additional scientific requirements were intended to contextualize observed elevation changes using a multisensor suite of radar sounders, gravimeters, magnetometers, and cameras. Using 15 different aircraft, OIB conducted 968 science flights, of which 42% were repeat surveys of land ice, 42% were surveys of previously unmapped terrain across the Greenland and Antarctic ice sheets, Arctic ice caps, and Alaskan glaciers, and 16% were surveys of sea ice. The combination of an expansive instrument suite and breadth of surveys enabled numerous fundamental advances in our understanding of the Earth’s cryosphere. For land ice, OIB dramatically improved knowledge of interannual outlet-glacier variability, ice-sheet, and outlet-glacier thicknesses, snowfall rates on ice sheets, fjord and sub-ice-shelf bathymetry, and ice-sheet hydrology. Unanticipated discoveries included a reliable method for constraining the thickness within difficult-to-sound incised troughs beneath ice sheets, the extent of the firn aquifer within the Greenland Ice Sheet, the vulnerability of many Greenland and Antarctic outlet glaciers to ocean-driven melting at their grounding zones, and the dominance of surface-melt-driven mass loss of Alaskan glaciers. For sea ice, OIB significantly advanced our understanding of spatiotemporal variability in sea ice freeboard and its snow cover, especially through combined analysis of fine-resolution altimetry, visible imagery, and snow radar measurements of the overlying snow thickness. Such analyses led to the unanticipated discovery of an interdecadal decrease in snow thickness on Arctic sea ice and numerous opportunities to validate sea ice freeboards from satellite radar altimetry. While many of its data sets have yet to be fully explored, OIB’s scientific legacy has already demonstrated the value of sustained investment in reliable airborne platforms, airborne instrument development, interagency and international collaboration, and open and rapid data access to advance our understanding of Earth’s remote polar regions and their role in the Earth system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews of Geophysics
Reviews of Geophysics 地学-地球化学与地球物理
CiteScore
50.30
自引率
0.80%
发文量
28
审稿时长
12 months
期刊介绍: Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.
期刊最新文献
Carbon Mineralization in Fractured Mafic and Ultramafic Rocks: A Review Global Land Subsidence: Impact of Climate Extremes and Human Activities Dynamics, Monitoring, and Forecasting of Tephra in the Atmosphere Age of Stratospheric Air: Progress on Processes, Observations, and Long-Term Trends Managing Induced Seismicity Risks From Enhanced Geothermal Systems: A Good Practice Guideline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1