S. Kozyukhin, P. Lazarenko, Y. Vorobyov, M. Savelyev, A. Polokhin, V. Glukhenkaya, A. Sherchenkov, A. Gerasimenko
{"title":"非晶GST225相变材料的激光诱导改性","authors":"S. Kozyukhin, P. Lazarenko, Y. Vorobyov, M. Savelyev, A. Polokhin, V. Glukhenkaya, A. Sherchenkov, A. Gerasimenko","doi":"10.1051/MATTECH/2019008","DOIUrl":null,"url":null,"abstract":"In this paper, we have studied the crystallization behavior of amorphous GST225 thin films upon irradiation with nanosecond laser pulses. Crystalline and melt-quenched amorphous regions were produced by exposure to laser single or multipulses, and were characterized by the optical microscopy and by the micro-Raman spectroscopy. Transition region between the amorphous and crystalline parts of the laser-modified area was investigated by atomic force microscopy. Using irradiation by single laser pulses with varying fluence, it was verified that crystallization was possible if the fluence is more than 90.4 mJ/cm2.","PeriodicalId":43816,"journal":{"name":"Materiaux & Techniques","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Laser-induced modification of amorphous GST225 phase change materials\",\"authors\":\"S. Kozyukhin, P. Lazarenko, Y. Vorobyov, M. Savelyev, A. Polokhin, V. Glukhenkaya, A. Sherchenkov, A. Gerasimenko\",\"doi\":\"10.1051/MATTECH/2019008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have studied the crystallization behavior of amorphous GST225 thin films upon irradiation with nanosecond laser pulses. Crystalline and melt-quenched amorphous regions were produced by exposure to laser single or multipulses, and were characterized by the optical microscopy and by the micro-Raman spectroscopy. Transition region between the amorphous and crystalline parts of the laser-modified area was investigated by atomic force microscopy. Using irradiation by single laser pulses with varying fluence, it was verified that crystallization was possible if the fluence is more than 90.4 mJ/cm2.\",\"PeriodicalId\":43816,\"journal\":{\"name\":\"Materiaux & Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiaux & Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/MATTECH/2019008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiaux & Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MATTECH/2019008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Laser-induced modification of amorphous GST225 phase change materials
In this paper, we have studied the crystallization behavior of amorphous GST225 thin films upon irradiation with nanosecond laser pulses. Crystalline and melt-quenched amorphous regions were produced by exposure to laser single or multipulses, and were characterized by the optical microscopy and by the micro-Raman spectroscopy. Transition region between the amorphous and crystalline parts of the laser-modified area was investigated by atomic force microscopy. Using irradiation by single laser pulses with varying fluence, it was verified that crystallization was possible if the fluence is more than 90.4 mJ/cm2.
期刊介绍:
Matériaux & Techniques informs you, through high-quality and peer-reviewed research papers on research and progress in the domain of materials: physical-chemical characterization, implementation, resistance of materials in their environment (properties of use, modelling)... The journal concerns all materials, metals and alloys, nanotechnology, plastics, elastomers, composite materials, glass or ceramics. This journal for materials scientists, chemists, physicists, ceramicists, engineers, metallurgists and students provides 6 issues per year plus a special issue. Each issue, in addition to scientific articles on specialized topics, also contains selected technical news (conference announcements, new products etc.).