铜镍(Cu-Ni)合金的组织和性能演变:合金材料影响的综述

IF 1.3 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materiaux & Techniques Pub Date : 2021-01-01 DOI:10.1051/mattech/2021022
C. Nwaeju, F.O. Edoziuno, A. Adediran, E. Nnuka, O. Adesina
{"title":"铜镍(Cu-Ni)合金的组织和性能演变:合金材料影响的综述","authors":"C. Nwaeju, F.O. Edoziuno, A. Adediran, E. Nnuka, O. Adesina","doi":"10.1051/mattech/2021022","DOIUrl":null,"url":null,"abstract":"Copper–nickel alloy has the potential in sustaining the recent demands in advanced marine engineering applications. It has been found advantageous over other copper alloys due to the unique properties and corrosion resistance they possess. However, the structure of Cu–Ni alloy alone is not sufficient to withstand many applications, as the structure cannot perform efficiently in an aggressive environment. The performance of this alloy inherently depends on carefully select alloying compositions, as the alloying elements are associated with the precipitation of intermetallic particles that will enhance mechanical properties and corrosion resistance when designing the component of Cu–Ni alloys. A combination of alloying elements has been conceptualized in the designing of copper–nickel alloy. This review described the role of alloying elements in modifying the microstructural features through phase transformation and how it affects the improvement of the mechanical and physical properties of Cu–Ni based alloys. The effect of alloying elements on the structure and properties of Cu–Ni alloys have been critically summarized based on surveying the works done by authors on this category of structural modification binary Cu–Ni alloy.","PeriodicalId":43816,"journal":{"name":"Materiaux & Techniques","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Structural and properties evolution of copper–nickel (Cu–Ni) alloys: a review of the effects of alloying materials\",\"authors\":\"C. Nwaeju, F.O. Edoziuno, A. Adediran, E. Nnuka, O. Adesina\",\"doi\":\"10.1051/mattech/2021022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copper–nickel alloy has the potential in sustaining the recent demands in advanced marine engineering applications. It has been found advantageous over other copper alloys due to the unique properties and corrosion resistance they possess. However, the structure of Cu–Ni alloy alone is not sufficient to withstand many applications, as the structure cannot perform efficiently in an aggressive environment. The performance of this alloy inherently depends on carefully select alloying compositions, as the alloying elements are associated with the precipitation of intermetallic particles that will enhance mechanical properties and corrosion resistance when designing the component of Cu–Ni alloys. A combination of alloying elements has been conceptualized in the designing of copper–nickel alloy. This review described the role of alloying elements in modifying the microstructural features through phase transformation and how it affects the improvement of the mechanical and physical properties of Cu–Ni based alloys. The effect of alloying elements on the structure and properties of Cu–Ni alloys have been critically summarized based on surveying the works done by authors on this category of structural modification binary Cu–Ni alloy.\",\"PeriodicalId\":43816,\"journal\":{\"name\":\"Materiaux & Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiaux & Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mattech/2021022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiaux & Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mattech/2021022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

铜镍合金具有满足现代先进海洋工程应用需求的潜力。由于它具有独特的性能和耐腐蚀性,已被发现优于其他铜合金。然而,Cu-Ni合金的结构本身不足以承受许多应用,因为该结构不能在恶劣的环境中有效地发挥作用。这种合金的性能本质上取决于精心选择的合金成分,因为合金元素与金属间颗粒的沉淀有关,在设计Cu-Ni合金组件时,金属间颗粒的析出将提高机械性能和耐腐蚀性。在铜镍合金的设计中,提出了合金元素组合的概念。本文综述了合金元素在Cu-Ni基合金中通过相变改变微观组织特征的作用,以及合金元素对Cu-Ni基合金力学和物理性能改善的影响。在对这类组织改性二元Cu-Ni合金的研究工作进行综述的基础上,总结了合金元素对Cu-Ni合金组织和性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural and properties evolution of copper–nickel (Cu–Ni) alloys: a review of the effects of alloying materials
Copper–nickel alloy has the potential in sustaining the recent demands in advanced marine engineering applications. It has been found advantageous over other copper alloys due to the unique properties and corrosion resistance they possess. However, the structure of Cu–Ni alloy alone is not sufficient to withstand many applications, as the structure cannot perform efficiently in an aggressive environment. The performance of this alloy inherently depends on carefully select alloying compositions, as the alloying elements are associated with the precipitation of intermetallic particles that will enhance mechanical properties and corrosion resistance when designing the component of Cu–Ni alloys. A combination of alloying elements has been conceptualized in the designing of copper–nickel alloy. This review described the role of alloying elements in modifying the microstructural features through phase transformation and how it affects the improvement of the mechanical and physical properties of Cu–Ni based alloys. The effect of alloying elements on the structure and properties of Cu–Ni alloys have been critically summarized based on surveying the works done by authors on this category of structural modification binary Cu–Ni alloy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materiaux & Techniques
Materiaux & Techniques MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
11.10%
发文量
20
期刊介绍: Matériaux & Techniques informs you, through high-quality and peer-reviewed research papers on research and progress in the domain of materials: physical-chemical characterization, implementation, resistance of materials in their environment (properties of use, modelling)... The journal concerns all materials, metals and alloys, nanotechnology, plastics, elastomers, composite materials, glass or ceramics. This journal for materials scientists, chemists, physicists, ceramicists, engineers, metallurgists and students provides 6 issues per year plus a special issue. Each issue, in addition to scientific articles on specialized topics, also contains selected technical news (conference announcements, new products etc.).
期刊最新文献
The emerging role of design in the circular materials field Hydrogen production from coke oven gas using pressure swing adsorption process − a mathematical modelling approach Mechanical properties of stainless steel by using high temperature microhardness tester The application of various papercutting elements in packaging design Charpy V notch tests – Risks associated with testing with 3 samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1