钛合金的常规和非常规加工技术综述

IF 1.9 Q3 ENGINEERING, MANUFACTURING Manufacturing Review Pub Date : 2020-01-01 DOI:10.1051/mfreview/2020029
S. R. Oke, Gabriel Seun Ogunwande, M. Onifade, Emmanuel O. Aikulola, Esther Dolapo Adewale, Olumide Emmanuel Olawale, B. E. Ayodele, F. Mwema, J. Obiko, M. Bodunrin
{"title":"钛合金的常规和非常规加工技术综述","authors":"S. R. Oke, Gabriel Seun Ogunwande, M. Onifade, Emmanuel O. Aikulola, Esther Dolapo Adewale, Olumide Emmanuel Olawale, B. E. Ayodele, F. Mwema, J. Obiko, M. Bodunrin","doi":"10.1051/mfreview/2020029","DOIUrl":null,"url":null,"abstract":"Machining is one of the major contributors to the high cost of titanium-based components. This is as a result of severe tool wear and high volume of waste generated from the workpiece. Research efforts seeking to reduce the cost of titanium alloys have explored the possibility of either eliminating machining as a processing step or optimising parameters for machining titanium alloys. Since the former is still at the infant stage, this article provides a review on the common machining techniques that were used for processing titanium-based components. These techniques are classified into two major categories based on the type of contact between the titanium workpiece and the tool. The two categories were dubbed conventional and non-conventional machining techniques. Most of the parameters that are associated with these techniques and their corresponding machinability indicators were presented. The common machinability indicators that are covered in this review include surface roughness, cutting forces, tool wear rate, chip formation and material removal rate. However, surface roughness, tool wear rate and metal removal rate were emphasised. The critical or optimum combination of parameters for achieving improved machinability was also highlighted. Some recommendations on future research directions are made.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/mfreview/2020029","citationCount":"17","resultStr":"{\"title\":\"An overview of conventional and non-conventional techniques for machining of titanium alloys\",\"authors\":\"S. R. Oke, Gabriel Seun Ogunwande, M. Onifade, Emmanuel O. Aikulola, Esther Dolapo Adewale, Olumide Emmanuel Olawale, B. E. Ayodele, F. Mwema, J. Obiko, M. Bodunrin\",\"doi\":\"10.1051/mfreview/2020029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machining is one of the major contributors to the high cost of titanium-based components. This is as a result of severe tool wear and high volume of waste generated from the workpiece. Research efforts seeking to reduce the cost of titanium alloys have explored the possibility of either eliminating machining as a processing step or optimising parameters for machining titanium alloys. Since the former is still at the infant stage, this article provides a review on the common machining techniques that were used for processing titanium-based components. These techniques are classified into two major categories based on the type of contact between the titanium workpiece and the tool. The two categories were dubbed conventional and non-conventional machining techniques. Most of the parameters that are associated with these techniques and their corresponding machinability indicators were presented. The common machinability indicators that are covered in this review include surface roughness, cutting forces, tool wear rate, chip formation and material removal rate. However, surface roughness, tool wear rate and metal removal rate were emphasised. The critical or optimum combination of parameters for achieving improved machinability was also highlighted. Some recommendations on future research directions are made.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/mfreview/2020029\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2020029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2020029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 17

摘要

机械加工是造成钛基部件高成本的主要原因之一。这是由于严重的刀具磨损和工件产生的大量废物造成的。为了降低钛合金的成本,研究人员探索了消除加工这一加工步骤或优化钛合金加工参数的可能性。由于前者仍处于起步阶段,本文综述了用于加工钛基部件的常用加工技术。这些技术根据钛工件和工具之间的接触类型分为两大类。这两类被称为常规和非常规加工技术。给出了与这些工艺相关的大部分参数及其相应的可加工性指标。本综述涵盖的常见可加工性指标包括表面粗糙度、切削力、刀具磨损率、切屑形成和材料去除率。然而,强调表面粗糙度,刀具磨损率和金属去除率。还强调了实现改进可加工性的关键或最佳参数组合。并对今后的研究方向提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An overview of conventional and non-conventional techniques for machining of titanium alloys
Machining is one of the major contributors to the high cost of titanium-based components. This is as a result of severe tool wear and high volume of waste generated from the workpiece. Research efforts seeking to reduce the cost of titanium alloys have explored the possibility of either eliminating machining as a processing step or optimising parameters for machining titanium alloys. Since the former is still at the infant stage, this article provides a review on the common machining techniques that were used for processing titanium-based components. These techniques are classified into two major categories based on the type of contact between the titanium workpiece and the tool. The two categories were dubbed conventional and non-conventional machining techniques. Most of the parameters that are associated with these techniques and their corresponding machinability indicators were presented. The common machinability indicators that are covered in this review include surface roughness, cutting forces, tool wear rate, chip formation and material removal rate. However, surface roughness, tool wear rate and metal removal rate were emphasised. The critical or optimum combination of parameters for achieving improved machinability was also highlighted. Some recommendations on future research directions are made.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
期刊最新文献
A comprehensive review on the deformation behavior of refractory high entropy alloys at elevated temperatures A review on conventional and nonconventional machining of Nickel-based Nimonic superalloy Nanofluids, micro-lubrications and machining process optimisations − a review Topological structures for microchannel heat sink applications – a review Microstructure, physical, tensile and wear behaviour of B4C particles reinforced Al7010 alloy composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1