V. Lakshmi, K. Subbaiah, Arun Vikram Kothapalli, K. Suresh
{"title":"采用DEAR方法对Ti-6Al-4V合金在Mist-MQCL (Green environment)环境下的车削参数进行优化","authors":"V. Lakshmi, K. Subbaiah, Arun Vikram Kothapalli, K. Suresh","doi":"10.1051/mfreview/2020034","DOIUrl":null,"url":null,"abstract":"Sustainability in any production emphasizes green-manufacturing techniques, improvement in quality with energy-efficient techniques, and environment-friendly processes. Titanium machining productivity is greatly influenced by speed, as high cutting velocity raises the temperatures in the shear zone and heat, owing to its low thermal conductivity. Hence in this work, an attempt is made to increase productivity by exploring the efficacy at transition speed for titanium alloy machining. Water-soluble lubricant is mist-sprayed as aerosols at a near-zero temperature in minor quantity, to minimize the temperatures generated during the cutting process at increased speed. Besides, an optimal decision variable vector optimizes multi-goals of machining Titanium grade 5 alloys under Minimum quantity cooling lubrication explored in this study in transitional speed zones. The response goals are the optimization of “vibration, surface quality, tool wear rate, and Material removal rate.” Multi goal optimization achieved by hybrid Taguchi coupled with Data Envelopment Analysis based Ranking (DEAR). The tool wear is very rapid at velocities of 200 mm/min. DEAR technique uses computed Multi performance rank index (MPRI) to predict the best data set at: (velocity, feed, doc) at (120 mm/min, 0.2 mm/rev, 1.0 mm). In this setting, the responses are compared in dry, flood, and MQL environment. It is observed a 30%, 60%, 40% improvement in surface finish, tool life, and vibrations compared to a dry environment and 13% and 3% of roughness and tool wear rate compared to a flood environment. Thus MQCL can be adopted for Ti6Al4V at transitional speeds.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/mfreview/2020034","citationCount":"14","resultStr":"{\"title\":\"Parametric optimization while turning Ti-6Al-4V alloy in Mist-MQCL (Green environment) using the DEAR method\",\"authors\":\"V. Lakshmi, K. Subbaiah, Arun Vikram Kothapalli, K. Suresh\",\"doi\":\"10.1051/mfreview/2020034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sustainability in any production emphasizes green-manufacturing techniques, improvement in quality with energy-efficient techniques, and environment-friendly processes. Titanium machining productivity is greatly influenced by speed, as high cutting velocity raises the temperatures in the shear zone and heat, owing to its low thermal conductivity. Hence in this work, an attempt is made to increase productivity by exploring the efficacy at transition speed for titanium alloy machining. Water-soluble lubricant is mist-sprayed as aerosols at a near-zero temperature in minor quantity, to minimize the temperatures generated during the cutting process at increased speed. Besides, an optimal decision variable vector optimizes multi-goals of machining Titanium grade 5 alloys under Minimum quantity cooling lubrication explored in this study in transitional speed zones. The response goals are the optimization of “vibration, surface quality, tool wear rate, and Material removal rate.” Multi goal optimization achieved by hybrid Taguchi coupled with Data Envelopment Analysis based Ranking (DEAR). The tool wear is very rapid at velocities of 200 mm/min. DEAR technique uses computed Multi performance rank index (MPRI) to predict the best data set at: (velocity, feed, doc) at (120 mm/min, 0.2 mm/rev, 1.0 mm). In this setting, the responses are compared in dry, flood, and MQL environment. It is observed a 30%, 60%, 40% improvement in surface finish, tool life, and vibrations compared to a dry environment and 13% and 3% of roughness and tool wear rate compared to a flood environment. Thus MQCL can be adopted for Ti6Al4V at transitional speeds.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/mfreview/2020034\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2020034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2020034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Parametric optimization while turning Ti-6Al-4V alloy in Mist-MQCL (Green environment) using the DEAR method
Sustainability in any production emphasizes green-manufacturing techniques, improvement in quality with energy-efficient techniques, and environment-friendly processes. Titanium machining productivity is greatly influenced by speed, as high cutting velocity raises the temperatures in the shear zone and heat, owing to its low thermal conductivity. Hence in this work, an attempt is made to increase productivity by exploring the efficacy at transition speed for titanium alloy machining. Water-soluble lubricant is mist-sprayed as aerosols at a near-zero temperature in minor quantity, to minimize the temperatures generated during the cutting process at increased speed. Besides, an optimal decision variable vector optimizes multi-goals of machining Titanium grade 5 alloys under Minimum quantity cooling lubrication explored in this study in transitional speed zones. The response goals are the optimization of “vibration, surface quality, tool wear rate, and Material removal rate.” Multi goal optimization achieved by hybrid Taguchi coupled with Data Envelopment Analysis based Ranking (DEAR). The tool wear is very rapid at velocities of 200 mm/min. DEAR technique uses computed Multi performance rank index (MPRI) to predict the best data set at: (velocity, feed, doc) at (120 mm/min, 0.2 mm/rev, 1.0 mm). In this setting, the responses are compared in dry, flood, and MQL environment. It is observed a 30%, 60%, 40% improvement in surface finish, tool life, and vibrations compared to a dry environment and 13% and 3% of roughness and tool wear rate compared to a flood environment. Thus MQCL can be adopted for Ti6Al4V at transitional speeds.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.