K. Alaneme, Ayoyemi Adebanji Fatokun, S. R. Oke, P. Olubambi
{"title":"Ti-Nb2O5基复合材料的纳米压痕研究与力学性能分析","authors":"K. Alaneme, Ayoyemi Adebanji Fatokun, S. R. Oke, P. Olubambi","doi":"10.1051/mfreview/2020017","DOIUrl":null,"url":null,"abstract":"In this study, nanoindentation tests were used to evaluate the mechanical properties of spark plasma sintered Ti based composites containing 5, 10 and 15 wt.% Nb2O5, targeted for potential use as biomedical material. Nanoindentation tests were performed on the samples using indenter loads of 20 and 100 mN, while the microstructures were characterized using scanning electron microscopy. It was noted that with increasing Nb2O5 wt.%, there is transition from the lamellar structure of pure Ti to fully bimodal structures for the Ti-10 wt.% Nb2O5 and Ti-15 wt.% Nb2O5 composites. The hardness (6.0–40.67 GPa (20 mN) and 2.4–12.03 GPa (100 mN)) and reduced elastic modulus (115–266.91 GPa (20 mN) and (28.05–96.873 GPa (100 mN)) of the composites increases with increase in the Nb2O5 content, attributed to contributions of load transfer from the Ti matrix to the relatively harder Nb2O5 particles, particle and dispersion strengthening mechanisms. The elastic recovery index also improved with increase in Nb2O5 content, while the inverse was noted with respect to plasticity index. The elastic strain to failure and yield pressure both improved with increase in Nb2O5 content, which suggests that the antiwear properties and resistance to impact loading equally improves with Nb2O5 addition.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/mfreview/2020017","citationCount":"4","resultStr":"{\"title\":\"Nanoindentation studies and analysis of the mechanical properties of Ti-Nb2O5 based composites\",\"authors\":\"K. Alaneme, Ayoyemi Adebanji Fatokun, S. R. Oke, P. Olubambi\",\"doi\":\"10.1051/mfreview/2020017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, nanoindentation tests were used to evaluate the mechanical properties of spark plasma sintered Ti based composites containing 5, 10 and 15 wt.% Nb2O5, targeted for potential use as biomedical material. Nanoindentation tests were performed on the samples using indenter loads of 20 and 100 mN, while the microstructures were characterized using scanning electron microscopy. It was noted that with increasing Nb2O5 wt.%, there is transition from the lamellar structure of pure Ti to fully bimodal structures for the Ti-10 wt.% Nb2O5 and Ti-15 wt.% Nb2O5 composites. The hardness (6.0–40.67 GPa (20 mN) and 2.4–12.03 GPa (100 mN)) and reduced elastic modulus (115–266.91 GPa (20 mN) and (28.05–96.873 GPa (100 mN)) of the composites increases with increase in the Nb2O5 content, attributed to contributions of load transfer from the Ti matrix to the relatively harder Nb2O5 particles, particle and dispersion strengthening mechanisms. The elastic recovery index also improved with increase in Nb2O5 content, while the inverse was noted with respect to plasticity index. The elastic strain to failure and yield pressure both improved with increase in Nb2O5 content, which suggests that the antiwear properties and resistance to impact loading equally improves with Nb2O5 addition.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/mfreview/2020017\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2020017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2020017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Nanoindentation studies and analysis of the mechanical properties of Ti-Nb2O5 based composites
In this study, nanoindentation tests were used to evaluate the mechanical properties of spark plasma sintered Ti based composites containing 5, 10 and 15 wt.% Nb2O5, targeted for potential use as biomedical material. Nanoindentation tests were performed on the samples using indenter loads of 20 and 100 mN, while the microstructures were characterized using scanning electron microscopy. It was noted that with increasing Nb2O5 wt.%, there is transition from the lamellar structure of pure Ti to fully bimodal structures for the Ti-10 wt.% Nb2O5 and Ti-15 wt.% Nb2O5 composites. The hardness (6.0–40.67 GPa (20 mN) and 2.4–12.03 GPa (100 mN)) and reduced elastic modulus (115–266.91 GPa (20 mN) and (28.05–96.873 GPa (100 mN)) of the composites increases with increase in the Nb2O5 content, attributed to contributions of load transfer from the Ti matrix to the relatively harder Nb2O5 particles, particle and dispersion strengthening mechanisms. The elastic recovery index also improved with increase in Nb2O5 content, while the inverse was noted with respect to plasticity index. The elastic strain to failure and yield pressure both improved with increase in Nb2O5 content, which suggests that the antiwear properties and resistance to impact loading equally improves with Nb2O5 addition.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.