{"title":"基于效用法的D2钢线切割加工多响应优化","authors":"I. Nayak, J. Rana","doi":"10.1051/MFREVIEW/2021014","DOIUrl":null,"url":null,"abstract":"Wire electrical discharge machining (WEDM) is a popular non-conventional machining process used particularly for making extrusion dies, blanking punches, and tools especially requiring tight dimensional tolerances. Because of the process limitation, the rate of cutting and maintenance of close dimensional tolerance is a challenging task. Given the above facts, the present work has been focused on achieving the maximum possible cutting rate (VC) maintaining good dimensional accuracy and corner radius (RC). In the present research work, a multi-response optimization method (i.e. Taguchi based Utility approach) has been used to obtain an optimum set of input parameters such as pulse on time (TON), pulse off time (TOFF), servo voltage (SV), and wire feed rate (WF) resulting into a best overall cutting performance. Analysis of variance (ANOVA) is also used to find out the significant effect of each machining parameter on the cutting performance. The analysis reported in this paper will be helpful for industry personnel to select the best set of process parameters for achieving a good result without the use of any software or statistical analysis.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-response optimization in wire electrical discharge machining (WEDM) of D2 steel using utility approach\",\"authors\":\"I. Nayak, J. Rana\",\"doi\":\"10.1051/MFREVIEW/2021014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wire electrical discharge machining (WEDM) is a popular non-conventional machining process used particularly for making extrusion dies, blanking punches, and tools especially requiring tight dimensional tolerances. Because of the process limitation, the rate of cutting and maintenance of close dimensional tolerance is a challenging task. Given the above facts, the present work has been focused on achieving the maximum possible cutting rate (VC) maintaining good dimensional accuracy and corner radius (RC). In the present research work, a multi-response optimization method (i.e. Taguchi based Utility approach) has been used to obtain an optimum set of input parameters such as pulse on time (TON), pulse off time (TOFF), servo voltage (SV), and wire feed rate (WF) resulting into a best overall cutting performance. Analysis of variance (ANOVA) is also used to find out the significant effect of each machining parameter on the cutting performance. The analysis reported in this paper will be helpful for industry personnel to select the best set of process parameters for achieving a good result without the use of any software or statistical analysis.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/MFREVIEW/2021014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MFREVIEW/2021014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Multi-response optimization in wire electrical discharge machining (WEDM) of D2 steel using utility approach
Wire electrical discharge machining (WEDM) is a popular non-conventional machining process used particularly for making extrusion dies, blanking punches, and tools especially requiring tight dimensional tolerances. Because of the process limitation, the rate of cutting and maintenance of close dimensional tolerance is a challenging task. Given the above facts, the present work has been focused on achieving the maximum possible cutting rate (VC) maintaining good dimensional accuracy and corner radius (RC). In the present research work, a multi-response optimization method (i.e. Taguchi based Utility approach) has been used to obtain an optimum set of input parameters such as pulse on time (TON), pulse off time (TOFF), servo voltage (SV), and wire feed rate (WF) resulting into a best overall cutting performance. Analysis of variance (ANOVA) is also used to find out the significant effect of each machining parameter on the cutting performance. The analysis reported in this paper will be helpful for industry personnel to select the best set of process parameters for achieving a good result without the use of any software or statistical analysis.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.