铣削薄壁件壁挠度和材料去除率的实验研究与优化

IF 1.9 Q3 ENGINEERING, MANUFACTURING Manufacturing Review Pub Date : 2021-01-01 DOI:10.1051/mfreview/2021015
G. Bolar, S. N. Joshi
{"title":"铣削薄壁件壁挠度和材料去除率的实验研究与优化","authors":"G. Bolar, S. N. Joshi","doi":"10.1051/mfreview/2021015","DOIUrl":null,"url":null,"abstract":"The selection of optimal process parameters is essential while machining thin-wall parts since it influences the quality of the product and affects productivity. Dimensional accuracy affects the product quality, whereas the material removal rate alters the process productivity. Therefore, the study investigated the effect of tool diameter, feed per tooth, axial and radial depth of cut on wall deflection, and material removal rate. The selected process parameters were found to significantly influence the in-process deflection and thickness deviation due to the generation of unfavorable cutting forces. Further, an increase in the material removal rate resulted in chatter, thus adversely affecting the surface quality during the final stages of machining. Considering the conflicting nature of the two performance measures, Non-dominated Sorting Genetic Algorithm-II was adopted to solve the multi-objective optimization problem. The developed model could predict the optimal combination of process variables needed to lower the in-process wall deflection and maintain a superior surface finish while maintaining a steady material removal rate.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Experimental investigation and optimization of wall deflection and material removal rate in milling thin-wall parts\",\"authors\":\"G. Bolar, S. N. Joshi\",\"doi\":\"10.1051/mfreview/2021015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The selection of optimal process parameters is essential while machining thin-wall parts since it influences the quality of the product and affects productivity. Dimensional accuracy affects the product quality, whereas the material removal rate alters the process productivity. Therefore, the study investigated the effect of tool diameter, feed per tooth, axial and radial depth of cut on wall deflection, and material removal rate. The selected process parameters were found to significantly influence the in-process deflection and thickness deviation due to the generation of unfavorable cutting forces. Further, an increase in the material removal rate resulted in chatter, thus adversely affecting the surface quality during the final stages of machining. Considering the conflicting nature of the two performance measures, Non-dominated Sorting Genetic Algorithm-II was adopted to solve the multi-objective optimization problem. The developed model could predict the optimal combination of process variables needed to lower the in-process wall deflection and maintain a superior surface finish while maintaining a steady material removal rate.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2021015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2021015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 3

摘要

在薄壁件加工过程中,最佳工艺参数的选择是至关重要的,因为它影响到产品的质量和生产率。尺寸精度影响产品质量,而材料去除率影响工艺生产率。因此,研究了刀具直径、每齿进给量、切削轴向和径向深度对管壁挠度和材料去除率的影响。所选择的工艺参数对由于不利切削力的产生而产生的加工挠度和厚度偏差有显著影响。此外,材料去除率的增加导致颤振,从而对加工最后阶段的表面质量产生不利影响。考虑到两种性能指标的冲突性,采用非支配排序遗传算法- ii来解决多目标优化问题。所开发的模型可以预测所需的工艺变量的最佳组合,以降低过程中的壁挠度,并保持良好的表面光洁度,同时保持稳定的材料去除率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation and optimization of wall deflection and material removal rate in milling thin-wall parts
The selection of optimal process parameters is essential while machining thin-wall parts since it influences the quality of the product and affects productivity. Dimensional accuracy affects the product quality, whereas the material removal rate alters the process productivity. Therefore, the study investigated the effect of tool diameter, feed per tooth, axial and radial depth of cut on wall deflection, and material removal rate. The selected process parameters were found to significantly influence the in-process deflection and thickness deviation due to the generation of unfavorable cutting forces. Further, an increase in the material removal rate resulted in chatter, thus adversely affecting the surface quality during the final stages of machining. Considering the conflicting nature of the two performance measures, Non-dominated Sorting Genetic Algorithm-II was adopted to solve the multi-objective optimization problem. The developed model could predict the optimal combination of process variables needed to lower the in-process wall deflection and maintain a superior surface finish while maintaining a steady material removal rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
期刊最新文献
A comprehensive review on the deformation behavior of refractory high entropy alloys at elevated temperatures A review on conventional and nonconventional machining of Nickel-based Nimonic superalloy Nanofluids, micro-lubrications and machining process optimisations − a review Topological structures for microchannel heat sink applications – a review Microstructure, physical, tensile and wear behaviour of B4C particles reinforced Al7010 alloy composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1