碳化硅和棕榈仁灰增强搅拌铸铝基复合材料的力学性能

IF 1.9 Q3 ENGINEERING, MANUFACTURING Manufacturing Review Pub Date : 2022-01-01 DOI:10.1051/mfreview/2022011
Udochukwu Samuel Ikele, K. Alaneme, A. Oyetunji
{"title":"碳化硅和棕榈仁灰增强搅拌铸铝基复合材料的力学性能","authors":"Udochukwu Samuel Ikele, K. Alaneme, A. Oyetunji","doi":"10.1051/mfreview/2022011","DOIUrl":null,"url":null,"abstract":"Microstructural analysis and mechanical behaviour of aluminum matrix composites (AMCs) reinforced with palm kernel shell ash (PKSA) and silicon carbide (SiC) were studied. The AMCs containing 6, 8, 10 and 12 wt.% reinforcements, with weight ratios of 0:1, 1:3, 1:1, 3:1 and 1:0 (PKSA: SiC) were produced using stir casting method. % Porosity, hardness, tensile strength (UTS), ductility and fracture toughness were determined following standard procedures, while Scanning electron microscopy (SEM-EDS) was used for structural characterization. The results show that the composites produced have improved hardness. The UTS improved with increase in PKSA attaining maximum value at reinforcement weight ratio 1:1 and then decreases, the 6 wt.% reinforcement being the only exception. The ductility of the composites was lower than the unreinforced aluminum alloy with the SiC single-reinforced having the lowest. Also Fracture toughness was observed to be less than the unreinforced aluminum alloy with the SiC single reinforced having the lowest value. The PSKA:SiC weight ratio 1:1 gave the best property combination with optimum properties in terms of UTS (175.48MPa), ductility (8.61) and fracture toughness [6.5MPa(m)1/2].","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mechanical behaviour of stir cast aluminum matrix composites reinforced with silicon carbide and palm kernel shell ash\",\"authors\":\"Udochukwu Samuel Ikele, K. Alaneme, A. Oyetunji\",\"doi\":\"10.1051/mfreview/2022011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microstructural analysis and mechanical behaviour of aluminum matrix composites (AMCs) reinforced with palm kernel shell ash (PKSA) and silicon carbide (SiC) were studied. The AMCs containing 6, 8, 10 and 12 wt.% reinforcements, with weight ratios of 0:1, 1:3, 1:1, 3:1 and 1:0 (PKSA: SiC) were produced using stir casting method. % Porosity, hardness, tensile strength (UTS), ductility and fracture toughness were determined following standard procedures, while Scanning electron microscopy (SEM-EDS) was used for structural characterization. The results show that the composites produced have improved hardness. The UTS improved with increase in PKSA attaining maximum value at reinforcement weight ratio 1:1 and then decreases, the 6 wt.% reinforcement being the only exception. The ductility of the composites was lower than the unreinforced aluminum alloy with the SiC single-reinforced having the lowest. Also Fracture toughness was observed to be less than the unreinforced aluminum alloy with the SiC single reinforced having the lowest value. The PSKA:SiC weight ratio 1:1 gave the best property combination with optimum properties in terms of UTS (175.48MPa), ductility (8.61) and fracture toughness [6.5MPa(m)1/2].\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2022011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2022011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 5

摘要

研究了棕榈仁壳灰(PKSA)和碳化硅(SiC)增强铝基复合材料(AMCs)的显微组织和力学性能。采用搅拌铸造法制备了重量比分别为0:1、1:3、1:1、3:1和1:0 (PKSA: SiC)的增强剂含量为6,8,10和12wt .%的复合材料。孔隙率、硬度、拉伸强度(UTS)、延展性和断裂韧性按照标准程序进行测定,并用扫描电子显微镜(SEM-EDS)进行结构表征。结果表明,制备的复合材料具有较高的硬度。UTS随着PKSA的增加而提高,在配筋重量比为1:1时达到最大值,然后下降,只有6 wt.%的配筋例外。复合材料的塑性低于未增强的铝合金,其中SiC单增强的塑性最低。断裂韧性也低于未增强的铝合金,其中SiC单增强的断裂韧性最低。PSKA:SiC重量比为1:1时,获得了最佳性能组合,在UTS (175.48MPa)、延展性(8.61)和断裂韧性(6.5MPa(m)1/2)方面具有最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical behaviour of stir cast aluminum matrix composites reinforced with silicon carbide and palm kernel shell ash
Microstructural analysis and mechanical behaviour of aluminum matrix composites (AMCs) reinforced with palm kernel shell ash (PKSA) and silicon carbide (SiC) were studied. The AMCs containing 6, 8, 10 and 12 wt.% reinforcements, with weight ratios of 0:1, 1:3, 1:1, 3:1 and 1:0 (PKSA: SiC) were produced using stir casting method. % Porosity, hardness, tensile strength (UTS), ductility and fracture toughness were determined following standard procedures, while Scanning electron microscopy (SEM-EDS) was used for structural characterization. The results show that the composites produced have improved hardness. The UTS improved with increase in PKSA attaining maximum value at reinforcement weight ratio 1:1 and then decreases, the 6 wt.% reinforcement being the only exception. The ductility of the composites was lower than the unreinforced aluminum alloy with the SiC single-reinforced having the lowest. Also Fracture toughness was observed to be less than the unreinforced aluminum alloy with the SiC single reinforced having the lowest value. The PSKA:SiC weight ratio 1:1 gave the best property combination with optimum properties in terms of UTS (175.48MPa), ductility (8.61) and fracture toughness [6.5MPa(m)1/2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
期刊最新文献
A comprehensive review on the deformation behavior of refractory high entropy alloys at elevated temperatures A review on conventional and nonconventional machining of Nickel-based Nimonic superalloy Nanofluids, micro-lubrications and machining process optimisations − a review Topological structures for microchannel heat sink applications – a review Microstructure, physical, tensile and wear behaviour of B4C particles reinforced Al7010 alloy composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1