{"title":"基于DEFORM 3D仿真和田口法的Ti-6Al-4V车削加工参数验证与优化","authors":"J. Obiko, F. Mwema, M. Bodunrin","doi":"10.1051/MFREVIEW/2021001","DOIUrl":null,"url":null,"abstract":"In this study, we show that optimising cutting forces as a machining response gave the most favourable conditions for turning of Ti-6Al-4V alloy. Using a combination of computational methods involving DEFORM simulations, Taguchi Design of Experiment (DOE) and analysis of variance (ANOVA), it was possible to minimise typical machining response such as the cutting force, cutting power and chip-tool interface temperature. The turning parameters that were varied in this study include cutting speed, depth of cut and feed rate. The optimum turning parameter combinations that would minimise the machining responses were established by using the “smaller the better” criterion and selecting the highest value of Signal to Noise Ratio. Confirmatory simulation revealed that using cutting speed of 120 m/min, 0.25 mm depth of cut and 0.1 mm/rev feed rate, the lowest cutting force of 88.21 N and chip-tool interface temperature of 387.24 °C can be obtained. Regression analysis indicated that the highest correlation coefficient of 0.97 was obtained between cutting forces and the turning parameters. The relationship between cutting forces and the turning parameters was linear since first-order regression model was sufficient.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Validation and optimization of cutting parameters for Ti-6Al-4V turning operation using DEFORM 3D simulations and Taguchi method\",\"authors\":\"J. Obiko, F. Mwema, M. Bodunrin\",\"doi\":\"10.1051/MFREVIEW/2021001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we show that optimising cutting forces as a machining response gave the most favourable conditions for turning of Ti-6Al-4V alloy. Using a combination of computational methods involving DEFORM simulations, Taguchi Design of Experiment (DOE) and analysis of variance (ANOVA), it was possible to minimise typical machining response such as the cutting force, cutting power and chip-tool interface temperature. The turning parameters that were varied in this study include cutting speed, depth of cut and feed rate. The optimum turning parameter combinations that would minimise the machining responses were established by using the “smaller the better” criterion and selecting the highest value of Signal to Noise Ratio. Confirmatory simulation revealed that using cutting speed of 120 m/min, 0.25 mm depth of cut and 0.1 mm/rev feed rate, the lowest cutting force of 88.21 N and chip-tool interface temperature of 387.24 °C can be obtained. Regression analysis indicated that the highest correlation coefficient of 0.97 was obtained between cutting forces and the turning parameters. The relationship between cutting forces and the turning parameters was linear since first-order regression model was sufficient.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/MFREVIEW/2021001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/MFREVIEW/2021001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Validation and optimization of cutting parameters for Ti-6Al-4V turning operation using DEFORM 3D simulations and Taguchi method
In this study, we show that optimising cutting forces as a machining response gave the most favourable conditions for turning of Ti-6Al-4V alloy. Using a combination of computational methods involving DEFORM simulations, Taguchi Design of Experiment (DOE) and analysis of variance (ANOVA), it was possible to minimise typical machining response such as the cutting force, cutting power and chip-tool interface temperature. The turning parameters that were varied in this study include cutting speed, depth of cut and feed rate. The optimum turning parameter combinations that would minimise the machining responses were established by using the “smaller the better” criterion and selecting the highest value of Signal to Noise Ratio. Confirmatory simulation revealed that using cutting speed of 120 m/min, 0.25 mm depth of cut and 0.1 mm/rev feed rate, the lowest cutting force of 88.21 N and chip-tool interface temperature of 387.24 °C can be obtained. Regression analysis indicated that the highest correlation coefficient of 0.97 was obtained between cutting forces and the turning parameters. The relationship between cutting forces and the turning parameters was linear since first-order regression model was sufficient.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.