{"title":"基于田口模糊逻辑模型的DRCUFP复合材料AWJM表面粗糙度优化与预测","authors":"R. Shetty, Adithya Hegde","doi":"10.1051/mfreview/2021027","DOIUrl":null,"url":null,"abstract":"From last two decades, plant fiber reinforced polymer/polyester composites have been effectively used in structural and automotive applications. Researchers and manufacturers are looking forward for an effective utilization of these composites. However, despite the outstanding properties in terms of load bearing capacity and environmental sustainability of plant fibers the uptake of these composites are limited due to its poor machinability characteristics. Hence in this paper, Taguchi based fuzzy logic model for the optimization and prediction of process output variable such as surface roughness during Abrasive Water Jet Machining (AWJM) of new class of plant fiber reinforced polyester composites i.e., Discontinuously Reinforced Caryota Urens Fiber Polyester (DRCUFP) composites has been explored. Initially machining experiments has been carried out using L27 orthogonal array obtained from Taguchi Design of Experiments (TDOE). Finally, Taguchi based fuzzy logic model has been developed for optimisation and prediction of surface roughness. From the extensive experimentation using TDOE it was observed that the optimum cutting conditions for obtaining minimum surface roughness value, water pressure (A): 300 bar, traverse speed (B): 50 mm, stand of distance: 1 mm, abrasive flow rate: 12 g/s, depth of cut (C): 5 mm and Abrasive Size:200 microns. Further from FLM, it is observed that minimum water pressure (A): 100 bar, traverse speed (B): 50 mm, stand of distance: 1 mm, abrasive flow rate: 8 g/s, depth of cut (C): 5 mm and abrasive size:100 microns gave higher surface roughness values (3.47 microns) than that at maximum water pressure (A): 300 bar, traverse speed (B): 150 mm, stand of distance: 4 mm, abrasive flow rate: 12 g/s, depth of cut (C): 15 mm and abrasive size:200 microns the surface roughness values (3.25 microns).","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Taguchi based fuzzy logic model for optimisation and prediction of surface roughness during AWJM of DRCUFP composites\",\"authors\":\"R. Shetty, Adithya Hegde\",\"doi\":\"10.1051/mfreview/2021027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From last two decades, plant fiber reinforced polymer/polyester composites have been effectively used in structural and automotive applications. Researchers and manufacturers are looking forward for an effective utilization of these composites. However, despite the outstanding properties in terms of load bearing capacity and environmental sustainability of plant fibers the uptake of these composites are limited due to its poor machinability characteristics. Hence in this paper, Taguchi based fuzzy logic model for the optimization and prediction of process output variable such as surface roughness during Abrasive Water Jet Machining (AWJM) of new class of plant fiber reinforced polyester composites i.e., Discontinuously Reinforced Caryota Urens Fiber Polyester (DRCUFP) composites has been explored. Initially machining experiments has been carried out using L27 orthogonal array obtained from Taguchi Design of Experiments (TDOE). Finally, Taguchi based fuzzy logic model has been developed for optimisation and prediction of surface roughness. From the extensive experimentation using TDOE it was observed that the optimum cutting conditions for obtaining minimum surface roughness value, water pressure (A): 300 bar, traverse speed (B): 50 mm, stand of distance: 1 mm, abrasive flow rate: 12 g/s, depth of cut (C): 5 mm and Abrasive Size:200 microns. Further from FLM, it is observed that minimum water pressure (A): 100 bar, traverse speed (B): 50 mm, stand of distance: 1 mm, abrasive flow rate: 8 g/s, depth of cut (C): 5 mm and abrasive size:100 microns gave higher surface roughness values (3.47 microns) than that at maximum water pressure (A): 300 bar, traverse speed (B): 150 mm, stand of distance: 4 mm, abrasive flow rate: 12 g/s, depth of cut (C): 15 mm and abrasive size:200 microns the surface roughness values (3.25 microns).\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2021027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2021027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Taguchi based fuzzy logic model for optimisation and prediction of surface roughness during AWJM of DRCUFP composites
From last two decades, plant fiber reinforced polymer/polyester composites have been effectively used in structural and automotive applications. Researchers and manufacturers are looking forward for an effective utilization of these composites. However, despite the outstanding properties in terms of load bearing capacity and environmental sustainability of plant fibers the uptake of these composites are limited due to its poor machinability characteristics. Hence in this paper, Taguchi based fuzzy logic model for the optimization and prediction of process output variable such as surface roughness during Abrasive Water Jet Machining (AWJM) of new class of plant fiber reinforced polyester composites i.e., Discontinuously Reinforced Caryota Urens Fiber Polyester (DRCUFP) composites has been explored. Initially machining experiments has been carried out using L27 orthogonal array obtained from Taguchi Design of Experiments (TDOE). Finally, Taguchi based fuzzy logic model has been developed for optimisation and prediction of surface roughness. From the extensive experimentation using TDOE it was observed that the optimum cutting conditions for obtaining minimum surface roughness value, water pressure (A): 300 bar, traverse speed (B): 50 mm, stand of distance: 1 mm, abrasive flow rate: 12 g/s, depth of cut (C): 5 mm and Abrasive Size:200 microns. Further from FLM, it is observed that minimum water pressure (A): 100 bar, traverse speed (B): 50 mm, stand of distance: 1 mm, abrasive flow rate: 8 g/s, depth of cut (C): 5 mm and abrasive size:100 microns gave higher surface roughness values (3.47 microns) than that at maximum water pressure (A): 300 bar, traverse speed (B): 150 mm, stand of distance: 4 mm, abrasive flow rate: 12 g/s, depth of cut (C): 15 mm and abrasive size:200 microns the surface roughness values (3.25 microns).
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.