B4C颗粒增强Al7010合金复合材料的显微组织、物理性能、拉伸性能和磨损性能

IF 1.9 Q3 ENGINEERING, MANUFACTURING Manufacturing Review Pub Date : 2023-01-01 DOI:10.1051/mfreview/2023001
Kotresha Mydur, M. S., Madeva Nagaral, V. Auradi, B. V, S. T.A.
{"title":"B4C颗粒增强Al7010合金复合材料的显微组织、物理性能、拉伸性能和磨损性能","authors":"Kotresha Mydur, M. S., Madeva Nagaral, V. Auradi, B. V, S. T.A.","doi":"10.1051/mfreview/2023001","DOIUrl":null,"url":null,"abstract":"In the present study looked into how incorporating B4C particles with a size range of 20–25 microns would affect the mechanical, wear and physical properties of composites made from Al7010 alloy. The stir cast method accounted for of the total production of B4C composites. Different mechanical properties, such as hardness, tensile behaviour, wear and density, were measured and analysed for these synthetic composites. Microstructure was characterised by scanning electron microscopy and X-ray diffraction analysis to determine the distribution and phases of particles smaller than a micron. Wear tests were conducted on all the samples at varying loads and speeds. Hardness and tensile strength of Al7010 alloy were improved by adding B4C particles sized 20–25 microns, with only a minor decrease in elongation. Further, as B4C particles accumulated, the density of the Al7010 alloy decreased. SEM examination revealed a wide range of fracture behaviours upon tensile stress. Load and sliding speeds affected the wear behaviour of Al7010 alloy and its composites.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure, physical, tensile and wear behaviour of B4C particles reinforced Al7010 alloy composites\",\"authors\":\"Kotresha Mydur, M. S., Madeva Nagaral, V. Auradi, B. V, S. T.A.\",\"doi\":\"10.1051/mfreview/2023001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study looked into how incorporating B4C particles with a size range of 20–25 microns would affect the mechanical, wear and physical properties of composites made from Al7010 alloy. The stir cast method accounted for of the total production of B4C composites. Different mechanical properties, such as hardness, tensile behaviour, wear and density, were measured and analysed for these synthetic composites. Microstructure was characterised by scanning electron microscopy and X-ray diffraction analysis to determine the distribution and phases of particles smaller than a micron. Wear tests were conducted on all the samples at varying loads and speeds. Hardness and tensile strength of Al7010 alloy were improved by adding B4C particles sized 20–25 microns, with only a minor decrease in elongation. Further, as B4C particles accumulated, the density of the Al7010 alloy decreased. SEM examination revealed a wide range of fracture behaviours upon tensile stress. Load and sliding speeds affected the wear behaviour of Al7010 alloy and its composites.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2023001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2023001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,研究了加入尺寸范围为20-25微米的B4C颗粒如何影响由Al7010合金制成的复合材料的机械、磨损和物理性能。搅拌铸造法占B4C复合材料总产量的一半。测量和分析了这些合成复合材料的不同力学性能,如硬度、拉伸性能、磨损和密度。通过扫描电子显微镜和x射线衍射分析表征了微观结构,确定了小于1微米的颗粒的分布和物相。在不同的载荷和速度下对所有样品进行了磨损试验。添加20 ~ 25 μ m的B4C颗粒可提高Al7010合金的硬度和抗拉强度,但伸长率略有下降。此外,随着B4C颗粒的积累,Al7010合金的密度降低。扫描电镜检查显示了广泛的断裂行为的拉应力。载荷和滑动速度影响Al7010合金及其复合材料的磨损性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure, physical, tensile and wear behaviour of B4C particles reinforced Al7010 alloy composites
In the present study looked into how incorporating B4C particles with a size range of 20–25 microns would affect the mechanical, wear and physical properties of composites made from Al7010 alloy. The stir cast method accounted for of the total production of B4C composites. Different mechanical properties, such as hardness, tensile behaviour, wear and density, were measured and analysed for these synthetic composites. Microstructure was characterised by scanning electron microscopy and X-ray diffraction analysis to determine the distribution and phases of particles smaller than a micron. Wear tests were conducted on all the samples at varying loads and speeds. Hardness and tensile strength of Al7010 alloy were improved by adding B4C particles sized 20–25 microns, with only a minor decrease in elongation. Further, as B4C particles accumulated, the density of the Al7010 alloy decreased. SEM examination revealed a wide range of fracture behaviours upon tensile stress. Load and sliding speeds affected the wear behaviour of Al7010 alloy and its composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
期刊最新文献
A comprehensive review on the deformation behavior of refractory high entropy alloys at elevated temperatures A review on conventional and nonconventional machining of Nickel-based Nimonic superalloy Nanofluids, micro-lubrications and machining process optimisations − a review Topological structures for microchannel heat sink applications – a review Microstructure, physical, tensile and wear behaviour of B4C particles reinforced Al7010 alloy composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1