AA2519-T62 FSW接头低硬度区拉伸疲劳破坏研究

IF 1.9 Q3 ENGINEERING, MANUFACTURING Manufacturing Review Pub Date : 2022-01-01 DOI:10.1051/mfreview/2022023
R. Kosturek, T. Ślęzak, J. Torzewski, M. Wachowski, L. Śnieżek
{"title":"AA2519-T62 FSW接头低硬度区拉伸疲劳破坏研究","authors":"R. Kosturek, T. Ślęzak, J. Torzewski, M. Wachowski, L. Śnieżek","doi":"10.1051/mfreview/2022023","DOIUrl":null,"url":null,"abstract":"The aim of this research was to investigate the basic performance and failure of AA2519-T62 friction stir welded joint in tensile test and in low cycle fatigue regime. It has been reported that at the retreating side, the layer of overgrowth grains undergoes deformation in the TMAZ and forms a characteristic large-grain band partly surrounding the SZ. The reported UTS is very high and it equals 405 MPa, what corresponds to 86.5% joint efficiency value. The failure occurred in the LHZ at the retreating side with the fracture mechanism characterized by simultaneously cracking in several parallel planes. The LCF behavior of the tested joint indicates three stages of fatigue life: a relatively long period of cyclic hardening (up to 500–1000 cycles), the longest period of cyclic stabilization, followed by cyclic softening until failure. The fatigue crack initiation takes place in the near-surface layer of overgrown grains and then propagates through the low-hardness zone.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Study on tensile and fatigue failure in the low-hardness zone of AA2519-T62 FSW joint\",\"authors\":\"R. Kosturek, T. Ślęzak, J. Torzewski, M. Wachowski, L. Śnieżek\",\"doi\":\"10.1051/mfreview/2022023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this research was to investigate the basic performance and failure of AA2519-T62 friction stir welded joint in tensile test and in low cycle fatigue regime. It has been reported that at the retreating side, the layer of overgrowth grains undergoes deformation in the TMAZ and forms a characteristic large-grain band partly surrounding the SZ. The reported UTS is very high and it equals 405 MPa, what corresponds to 86.5% joint efficiency value. The failure occurred in the LHZ at the retreating side with the fracture mechanism characterized by simultaneously cracking in several parallel planes. The LCF behavior of the tested joint indicates three stages of fatigue life: a relatively long period of cyclic hardening (up to 500–1000 cycles), the longest period of cyclic stabilization, followed by cyclic softening until failure. The fatigue crack initiation takes place in the near-surface layer of overgrown grains and then propagates through the low-hardness zone.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2022023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2022023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 4

摘要

研究了AA2519-T62搅拌摩擦焊接接头在拉伸试验和低周疲劳状态下的基本性能和失效规律。有报道称,在后退侧,过度生长的晶粒层在TMAZ内发生变形,形成了部分环绕SZ的特征性大晶粒带。报告的UTS非常高,为405 MPa,相当于86.5%的关节效率值。破坏发生在后退侧LHZ处,断裂机制为多个平行面同时开裂。测试接头的LCF行为表明疲劳寿命的三个阶段:相对较长的循环硬化期(高达500-1000次循环),最长的循环稳定化期,然后是循环软化直至失效。疲劳裂纹首先发生在过长晶粒的近表层,然后通过低硬度区扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on tensile and fatigue failure in the low-hardness zone of AA2519-T62 FSW joint
The aim of this research was to investigate the basic performance and failure of AA2519-T62 friction stir welded joint in tensile test and in low cycle fatigue regime. It has been reported that at the retreating side, the layer of overgrowth grains undergoes deformation in the TMAZ and forms a characteristic large-grain band partly surrounding the SZ. The reported UTS is very high and it equals 405 MPa, what corresponds to 86.5% joint efficiency value. The failure occurred in the LHZ at the retreating side with the fracture mechanism characterized by simultaneously cracking in several parallel planes. The LCF behavior of the tested joint indicates three stages of fatigue life: a relatively long period of cyclic hardening (up to 500–1000 cycles), the longest period of cyclic stabilization, followed by cyclic softening until failure. The fatigue crack initiation takes place in the near-surface layer of overgrown grains and then propagates through the low-hardness zone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
期刊最新文献
A comprehensive review on the deformation behavior of refractory high entropy alloys at elevated temperatures A review on conventional and nonconventional machining of Nickel-based Nimonic superalloy Nanofluids, micro-lubrications and machining process optimisations − a review Topological structures for microchannel heat sink applications – a review Microstructure, physical, tensile and wear behaviour of B4C particles reinforced Al7010 alloy composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1