{"title":"肾离子运输中的mTOR信号","authors":"Anastasia Adella, Jeroen H. F. de Baaij","doi":"10.1111/apha.13960","DOIUrl":null,"url":null,"abstract":"<p>The mammalian target of rapamycin (mTOR) signaling pathway is crucial in maintaining cell growth and metabolism. The mTOR protein kinase constitutes the catalytic subunit of two multimeric protein complexes called mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). As such, this pathway is indispensable for many organs, including the kidney. Since its discovery, mTOR has been associated with major renal disorders such as acute kidney injury, chronic kidney disease, and polycystic kidney disease. On top of that, emerging studies using pharmacological interventions and genetic disease models have unveiled mTOR role in renal tubular ion handling. Along the tubule, mTORC1 and mTORC2 subunits are ubiquitously expressed at mRNA level. Nevertheless, at the protein level, current studies suggest that a tubular segment-specific balance between mTORC1 and mTORC2 exists. In the proximal tubule, mTORC1 regulates nutrients transports through various transporters located in this segment. On the other hand, in the thick ascending limb of the loop of Henle, both complexes play a role in regulating NKCC2 expression and activity. Lastly, in the principal cells of the collecting duct, mTORC2 determines Na<sup>+</sup> reabsorption and K<sup>+</sup> excretion by regulating of SGK1 activation. Altogether, these studies establish the relevance of the mTOR signaling pathway in the pathophysiology of tubular solute transport. Despite extensive studies on the effectors of mTOR, the upstream activators of mTOR signaling remain elusive in most nephron segments. Further understanding of the role of growth factor signaling and nutrient sensing is essential to establish the exact role of mTOR in kidney physiology.</p>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"238 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.13960","citationCount":"1","resultStr":"{\"title\":\"mTOR signaling in renal ion transport\",\"authors\":\"Anastasia Adella, Jeroen H. F. de Baaij\",\"doi\":\"10.1111/apha.13960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mammalian target of rapamycin (mTOR) signaling pathway is crucial in maintaining cell growth and metabolism. The mTOR protein kinase constitutes the catalytic subunit of two multimeric protein complexes called mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). As such, this pathway is indispensable for many organs, including the kidney. Since its discovery, mTOR has been associated with major renal disorders such as acute kidney injury, chronic kidney disease, and polycystic kidney disease. On top of that, emerging studies using pharmacological interventions and genetic disease models have unveiled mTOR role in renal tubular ion handling. Along the tubule, mTORC1 and mTORC2 subunits are ubiquitously expressed at mRNA level. Nevertheless, at the protein level, current studies suggest that a tubular segment-specific balance between mTORC1 and mTORC2 exists. In the proximal tubule, mTORC1 regulates nutrients transports through various transporters located in this segment. On the other hand, in the thick ascending limb of the loop of Henle, both complexes play a role in regulating NKCC2 expression and activity. Lastly, in the principal cells of the collecting duct, mTORC2 determines Na<sup>+</sup> reabsorption and K<sup>+</sup> excretion by regulating of SGK1 activation. Altogether, these studies establish the relevance of the mTOR signaling pathway in the pathophysiology of tubular solute transport. Despite extensive studies on the effectors of mTOR, the upstream activators of mTOR signaling remain elusive in most nephron segments. Further understanding of the role of growth factor signaling and nutrient sensing is essential to establish the exact role of mTOR in kidney physiology.</p>\",\"PeriodicalId\":107,\"journal\":{\"name\":\"Acta Physiologica\",\"volume\":\"238 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.13960\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physiologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/apha.13960\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologica","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/apha.13960","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
The mammalian target of rapamycin (mTOR) signaling pathway is crucial in maintaining cell growth and metabolism. The mTOR protein kinase constitutes the catalytic subunit of two multimeric protein complexes called mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). As such, this pathway is indispensable for many organs, including the kidney. Since its discovery, mTOR has been associated with major renal disorders such as acute kidney injury, chronic kidney disease, and polycystic kidney disease. On top of that, emerging studies using pharmacological interventions and genetic disease models have unveiled mTOR role in renal tubular ion handling. Along the tubule, mTORC1 and mTORC2 subunits are ubiquitously expressed at mRNA level. Nevertheless, at the protein level, current studies suggest that a tubular segment-specific balance between mTORC1 and mTORC2 exists. In the proximal tubule, mTORC1 regulates nutrients transports through various transporters located in this segment. On the other hand, in the thick ascending limb of the loop of Henle, both complexes play a role in regulating NKCC2 expression and activity. Lastly, in the principal cells of the collecting duct, mTORC2 determines Na+ reabsorption and K+ excretion by regulating of SGK1 activation. Altogether, these studies establish the relevance of the mTOR signaling pathway in the pathophysiology of tubular solute transport. Despite extensive studies on the effectors of mTOR, the upstream activators of mTOR signaling remain elusive in most nephron segments. Further understanding of the role of growth factor signaling and nutrient sensing is essential to establish the exact role of mTOR in kidney physiology.
期刊介绍:
Acta Physiologica is an important forum for the publication of high quality original research in physiology and related areas by authors from all over the world. Acta Physiologica is a leading journal in human/translational physiology while promoting all aspects of the science of physiology. The journal publishes full length original articles on important new observations as well as reviews and commentaries.