{"title":"变色龙壳中氧和碳同位素的变化:环境影响和生命效应","authors":"Arianna Mancuso, Ruth Yam, Fiorella Prada, Marco Stagioni, Stefano Goffredo, Aldo Shemesh","doi":"10.1111/gbi.12526","DOIUrl":null,"url":null,"abstract":"<p>Stable isotopes in mollusc shells, together with variable growth rates and other geochemical properties, can register different environmental clues, including seawater temperature, salinity and primary productivity. However, the strict biological control over the construction of biominerals exerted by many calcifying organisms can constrain the use of these organisms for paleoenvironmental reconstructions. Biologically controlled calcification is responsible for the so called vital effects that cause a departure from isotopic equilibrium during shell formation, resulting in lower shell oxygen and carbon compared to the equilibrium value. We investigated shell oxygen and carbon isotopic composition of the bivalve <i>Chamelea gallina</i> in six sites along with a latitudinal gradient on the Adriatic Sea (NE Mediterranean Sea). Seawater δ<sup>18</sup>O and δ<sup>13</sup>C<sub>DIC</sub> varied from North to South, reflecting variations in seawater temperature, salinity, and chlorophyll concentration among sites. Shell δ<sup>18</sup>O and δ<sup>13</sup>C differed among sites and exhibited a wide range of values along with the ~400 km latitudinal gradient, away from isotopic equilibrium for both isotopes. These results hampered the utilization of this bivalve as a proxy for environmental reconstructions, in spite of <i>C. gallina</i> showing promise as a warm temperature proxy. Rigorous calibration studies with a precise insight of environment and shell growth are crucial prior to considering this bivalve as a reliable paleoclimatic archive.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 1","pages":"119-132"},"PeriodicalIF":2.7000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12526","citationCount":"0","resultStr":"{\"title\":\"Oxygen and carbon isotope variations in Chamelea gallina shells: Environmental influences and vital effects\",\"authors\":\"Arianna Mancuso, Ruth Yam, Fiorella Prada, Marco Stagioni, Stefano Goffredo, Aldo Shemesh\",\"doi\":\"10.1111/gbi.12526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stable isotopes in mollusc shells, together with variable growth rates and other geochemical properties, can register different environmental clues, including seawater temperature, salinity and primary productivity. However, the strict biological control over the construction of biominerals exerted by many calcifying organisms can constrain the use of these organisms for paleoenvironmental reconstructions. Biologically controlled calcification is responsible for the so called vital effects that cause a departure from isotopic equilibrium during shell formation, resulting in lower shell oxygen and carbon compared to the equilibrium value. We investigated shell oxygen and carbon isotopic composition of the bivalve <i>Chamelea gallina</i> in six sites along with a latitudinal gradient on the Adriatic Sea (NE Mediterranean Sea). Seawater δ<sup>18</sup>O and δ<sup>13</sup>C<sub>DIC</sub> varied from North to South, reflecting variations in seawater temperature, salinity, and chlorophyll concentration among sites. Shell δ<sup>18</sup>O and δ<sup>13</sup>C differed among sites and exhibited a wide range of values along with the ~400 km latitudinal gradient, away from isotopic equilibrium for both isotopes. These results hampered the utilization of this bivalve as a proxy for environmental reconstructions, in spite of <i>C. gallina</i> showing promise as a warm temperature proxy. Rigorous calibration studies with a precise insight of environment and shell growth are crucial prior to considering this bivalve as a reliable paleoclimatic archive.</p>\",\"PeriodicalId\":173,\"journal\":{\"name\":\"Geobiology\",\"volume\":\"21 1\",\"pages\":\"119-132\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12526\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12526\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12526","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Oxygen and carbon isotope variations in Chamelea gallina shells: Environmental influences and vital effects
Stable isotopes in mollusc shells, together with variable growth rates and other geochemical properties, can register different environmental clues, including seawater temperature, salinity and primary productivity. However, the strict biological control over the construction of biominerals exerted by many calcifying organisms can constrain the use of these organisms for paleoenvironmental reconstructions. Biologically controlled calcification is responsible for the so called vital effects that cause a departure from isotopic equilibrium during shell formation, resulting in lower shell oxygen and carbon compared to the equilibrium value. We investigated shell oxygen and carbon isotopic composition of the bivalve Chamelea gallina in six sites along with a latitudinal gradient on the Adriatic Sea (NE Mediterranean Sea). Seawater δ18O and δ13CDIC varied from North to South, reflecting variations in seawater temperature, salinity, and chlorophyll concentration among sites. Shell δ18O and δ13C differed among sites and exhibited a wide range of values along with the ~400 km latitudinal gradient, away from isotopic equilibrium for both isotopes. These results hampered the utilization of this bivalve as a proxy for environmental reconstructions, in spite of C. gallina showing promise as a warm temperature proxy. Rigorous calibration studies with a precise insight of environment and shell growth are crucial prior to considering this bivalve as a reliable paleoclimatic archive.
期刊介绍:
The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time.
Geobiology invites submission of high-quality articles in the following areas:
Origins and evolution of life
Co-evolution of the atmosphere, hydrosphere and biosphere
The sedimentary rock record and geobiology of critical intervals
Paleobiology and evolutionary ecology
Biogeochemistry and global elemental cycles
Microbe-mineral interactions
Biomarkers
Molecular ecology and phylogenetics.