热解温度和蒸汽活化对松木屑生物炭吸附磷酸盐的影响

Q3 Chemical Engineering Chemical Speciation and Bioavailability Pub Date : 2016-03-24 DOI:10.1080/09542299.2016.1165080
Kangyi Lou, A. Rajapaksha, Y. Ok, Scott X. Chang
{"title":"热解温度和蒸汽活化对松木屑生物炭吸附磷酸盐的影响","authors":"Kangyi Lou, A. Rajapaksha, Y. Ok, Scott X. Chang","doi":"10.1080/09542299.2016.1165080","DOIUrl":null,"url":null,"abstract":"Abstract Biochar can be used as an adsorbent for phosphate removal in aquatic environments to treat eutrophication problems. Designing biochars that have large phosphate adsorption capacity through altering pyrolysis conditions and applying activation techniques will improve phosphate removal efficiency. In this study, four pine sawdust biochars were produced at 300 and 550 °C with and without steam activation. Batch sorption experiments including isotherm and kinetic studies were conducted to understand how phosphate removal capabilities and adsorption mechanisms of biochars were affected by pyrolysis temperature and steam activation. Our results showed that the steam activation and pyrolysis temperature did not affect phosphate adsorption by the biochars. The four biochars removed <4% of phosphate from the aqueous solution, which were not affected by the pH of the solution and biochar application rate. The repulsion forces between biochar surfaces and phosphate ions were likely the cause of the low adsorption.","PeriodicalId":55264,"journal":{"name":"Chemical Speciation and Bioavailability","volume":"28 1","pages":"42 - 50"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09542299.2016.1165080","citationCount":"76","resultStr":"{\"title\":\"Pyrolysis temperature and steam activation effects on sorption of phosphate on pine sawdust biochars in aqueous solutions\",\"authors\":\"Kangyi Lou, A. Rajapaksha, Y. Ok, Scott X. Chang\",\"doi\":\"10.1080/09542299.2016.1165080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Biochar can be used as an adsorbent for phosphate removal in aquatic environments to treat eutrophication problems. Designing biochars that have large phosphate adsorption capacity through altering pyrolysis conditions and applying activation techniques will improve phosphate removal efficiency. In this study, four pine sawdust biochars were produced at 300 and 550 °C with and without steam activation. Batch sorption experiments including isotherm and kinetic studies were conducted to understand how phosphate removal capabilities and adsorption mechanisms of biochars were affected by pyrolysis temperature and steam activation. Our results showed that the steam activation and pyrolysis temperature did not affect phosphate adsorption by the biochars. The four biochars removed <4% of phosphate from the aqueous solution, which were not affected by the pH of the solution and biochar application rate. The repulsion forces between biochar surfaces and phosphate ions were likely the cause of the low adsorption.\",\"PeriodicalId\":55264,\"journal\":{\"name\":\"Chemical Speciation and Bioavailability\",\"volume\":\"28 1\",\"pages\":\"42 - 50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09542299.2016.1165080\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Speciation and Bioavailability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09542299.2016.1165080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Speciation and Bioavailability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09542299.2016.1165080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 76

摘要

生物炭可作为吸附剂去除水体中的磷酸盐,以解决水体富营养化问题。通过改变热解条件和应用活化技术设计具有较大磷酸盐吸附量的生物炭,将提高除磷效率。在本研究中,四种松木屑生物炭分别在300和550°C下进行了蒸汽活化和非蒸汽活化。通过等温线吸附实验和动力学研究,了解热解温度和蒸汽活化对生物炭除磷能力和吸附机理的影响。研究结果表明,水蒸气活化和热解温度对生物炭吸附磷酸盐没有影响。四种生物炭对水溶液中磷酸盐的去除率<4%,不受溶液pH和生物炭施用量的影响。生物炭表面与磷酸盐离子之间的排斥力可能是低吸附的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pyrolysis temperature and steam activation effects on sorption of phosphate on pine sawdust biochars in aqueous solutions
Abstract Biochar can be used as an adsorbent for phosphate removal in aquatic environments to treat eutrophication problems. Designing biochars that have large phosphate adsorption capacity through altering pyrolysis conditions and applying activation techniques will improve phosphate removal efficiency. In this study, four pine sawdust biochars were produced at 300 and 550 °C with and without steam activation. Batch sorption experiments including isotherm and kinetic studies were conducted to understand how phosphate removal capabilities and adsorption mechanisms of biochars were affected by pyrolysis temperature and steam activation. Our results showed that the steam activation and pyrolysis temperature did not affect phosphate adsorption by the biochars. The four biochars removed <4% of phosphate from the aqueous solution, which were not affected by the pH of the solution and biochar application rate. The repulsion forces between biochar surfaces and phosphate ions were likely the cause of the low adsorption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Chemical Speciation & Bioavailability ( CS&B) is a scholarly, peer-reviewed forum for insights on the chemical aspects of occurrence, distribution, transport, transformation, transfer, fate, and effects of substances in the environment and biota, and their impacts on the uptake of the substances by living organisms. Substances of interests include both beneficial and toxic ones, especially nutrients, heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants. It is the aim of this Journal to develop an international community of experienced colleagues to promote the research, discussion, review, and spread of information on chemical speciation and bioavailability, which is a topic of interest to researchers in many disciplines, including environmental, chemical, biological, food, medical, toxicology, and health sciences. Key themes in the scope of the Journal include, but are not limited to, the following “6Ms”: Methods for speciation analysis and the evaluation of bioavailability, especially the development, validation, and application of novel methods and techniques. Media that sustain the processes of release, distribution, transformation, and transfer of chemical speciation; of particular interest are emerging contaminants, such as engineered nanomaterials, pharmaceuticals, and personal-care products. Mobility of substance species in environment and biota, either spatially or temporally. Matters that influence the chemical speciation and bioavailability, mainly environmentally relevant conditions. Mechanisms that govern the transport, transformation, transfer, and fate of chemical speciation in the environment, and the biouptake of substances. Models for the simulation of chemical speciation and bioavailability, and for the prediction of toxicity. Chemical Speciation & Bioavailability is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read, anywhere, at any time. immediately on publication. There are no charges for submission to this journal.
期刊最新文献
Vertical distribution and release characteristics of phosphorus forms in the sediments from the river inflow area of Dianchi Lake, China Chemical speciation and complexation modeling of trace and rare earth elements in groundwater of Oban Massif and Mamfe mMbayment southeastern Nigeria Combined effects of straw-derived biochar and bio-based polymer-coated urea on nitrogen use efficiency and cotton yield Application of activated charcoal and nanocarbon to callus induction and plant regeneration in aromatic rice (Oryza sativa L.) Co-transport of Pb (II) and Cd (II) in saturated porous media: effects of colloids, flow rate and grain size
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1