结合机器学习和分子建模方法进行药物靶标亲和力预测

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2022-12-27 DOI:10.1002/wcms.1653
Carles Perez-Lopez, Alexis Molina, Estrella Lozoya, Victor Segarra, Marti Municoy, Victor Guallar
{"title":"结合机器学习和分子建模方法进行药物靶标亲和力预测","authors":"Carles Perez-Lopez,&nbsp;Alexis Molina,&nbsp;Estrella Lozoya,&nbsp;Victor Segarra,&nbsp;Marti Municoy,&nbsp;Victor Guallar","doi":"10.1002/wcms.1653","DOIUrl":null,"url":null,"abstract":"<p>Machine learning (ML) techniques offer a novel and exciting approach in the drug discovery field. One might even argue that their current expansion may push traditional MM modeling techniques to a secondary role in modeling methods. In this review article, we advocate that a combination of both techniques could be the most efficient implementation in the coming years. Focusing on drug-target affinity predictions, we first review pure ML approaches. Then, we introduced recent developments in mixing ML and MM methods in a single combined manner. Finally, we show the detailed implementation of a real industrial prospective study where nanomolar hits, on a kinase target, were obtained by combination of state of the art Monte Carlo MM simulations (PELE) with a ML ranking function.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 4","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combining machine-learning and molecular-modeling methods for drug-target affinity predictions\",\"authors\":\"Carles Perez-Lopez,&nbsp;Alexis Molina,&nbsp;Estrella Lozoya,&nbsp;Victor Segarra,&nbsp;Marti Municoy,&nbsp;Victor Guallar\",\"doi\":\"10.1002/wcms.1653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Machine learning (ML) techniques offer a novel and exciting approach in the drug discovery field. One might even argue that their current expansion may push traditional MM modeling techniques to a secondary role in modeling methods. In this review article, we advocate that a combination of both techniques could be the most efficient implementation in the coming years. Focusing on drug-target affinity predictions, we first review pure ML approaches. Then, we introduced recent developments in mixing ML and MM methods in a single combined manner. Finally, we show the detailed implementation of a real industrial prospective study where nanomolar hits, on a kinase target, were obtained by combination of state of the art Monte Carlo MM simulations (PELE) with a ML ranking function.</p><p>This article is categorized under:\\n </p>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1653\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1653","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

机器学习(ML)技术在药物发现领域提供了一种新颖而令人兴奋的方法。有人甚至会争辩说,它们目前的扩展可能会把传统的MM建模技术推到建模方法中的次要地位。在这篇回顾文章中,我们主张两种技术的结合可能是未来几年最有效的实现。专注于药物靶标亲和力预测,我们首先回顾了纯ML方法。然后,我们介绍了以单一组合方式混合ML和MM方法的最新进展。最后,我们展示了一个真实的工业前瞻性研究的详细实施,其中纳米摩尔命中,激酶目标,是通过最先进的蒙特卡罗MM模拟(PELE)与ML排序函数的结合获得的。本文分类如下:
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining machine-learning and molecular-modeling methods for drug-target affinity predictions

Machine learning (ML) techniques offer a novel and exciting approach in the drug discovery field. One might even argue that their current expansion may push traditional MM modeling techniques to a secondary role in modeling methods. In this review article, we advocate that a combination of both techniques could be the most efficient implementation in the coming years. Focusing on drug-target affinity predictions, we first review pure ML approaches. Then, we introduced recent developments in mixing ML and MM methods in a single combined manner. Finally, we show the detailed implementation of a real industrial prospective study where nanomolar hits, on a kinase target, were obtained by combination of state of the art Monte Carlo MM simulations (PELE) with a ML ranking function.

This article is categorized under:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
期刊最新文献
Issue Information Embedded Many-Body Green's Function Methods for Electronic Excitations in Complex Molecular Systems ROBERT: Bridging the Gap Between Machine Learning and Chemistry Advanced quantum and semiclassical methods for simulating photoinduced molecular dynamics and spectroscopy Computational design of energy-related materials: From first-principles calculations to machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1