{"title":"通过标签介导的金属颗粒标记的单分子的电镜可视化。","authors":"R. Shigemoto","doi":"10.1093/jmicro/dfab048","DOIUrl":null,"url":null,"abstract":"Genetically encoded tags have introduced extensive lines of application from purification of tagged proteins to their visualization at the single molecular, cellular, histological and whole-body levels. Combined with other rapidly developing technologies such as clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, proteomics, super-resolution microscopy and proximity labeling, a large variety of genetically encoded tags have been developed in the last two decades. In this review, I focus on the current status of tag development for electron microscopic (EM) visualization of proteins with metal particle labeling. Compared with conventional immunoelectron microscopy using gold particles, tag-mediated metal particle labeling has several advantages that could potentially improve the sensitivity, spatial and temporal resolution, and applicability to a wide range of proteins of interest (POIs). It may enable researchers to detect single molecules in situ, allowing the quantitative measurement of absolute numbers and exact localization patterns of POI in the ultrastructural context. Thus, genetically encoded tags for EM could revolutionize the field as green fluorescence protein did for light microscopy, although we still have many challenges to overcome before reaching this goal.","PeriodicalId":48655,"journal":{"name":"Microscopy","volume":"71 Supplement_1 1","pages":"i72-i80"},"PeriodicalIF":1.5000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electron microscopic visualization of single molecules by tag-mediated metal particle labeling.\",\"authors\":\"R. Shigemoto\",\"doi\":\"10.1093/jmicro/dfab048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetically encoded tags have introduced extensive lines of application from purification of tagged proteins to their visualization at the single molecular, cellular, histological and whole-body levels. Combined with other rapidly developing technologies such as clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, proteomics, super-resolution microscopy and proximity labeling, a large variety of genetically encoded tags have been developed in the last two decades. In this review, I focus on the current status of tag development for electron microscopic (EM) visualization of proteins with metal particle labeling. Compared with conventional immunoelectron microscopy using gold particles, tag-mediated metal particle labeling has several advantages that could potentially improve the sensitivity, spatial and temporal resolution, and applicability to a wide range of proteins of interest (POIs). It may enable researchers to detect single molecules in situ, allowing the quantitative measurement of absolute numbers and exact localization patterns of POI in the ultrastructural context. Thus, genetically encoded tags for EM could revolutionize the field as green fluorescence protein did for light microscopy, although we still have many challenges to overcome before reaching this goal.\",\"PeriodicalId\":48655,\"journal\":{\"name\":\"Microscopy\",\"volume\":\"71 Supplement_1 1\",\"pages\":\"i72-i80\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfab048\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jmicro/dfab048","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
Electron microscopic visualization of single molecules by tag-mediated metal particle labeling.
Genetically encoded tags have introduced extensive lines of application from purification of tagged proteins to their visualization at the single molecular, cellular, histological and whole-body levels. Combined with other rapidly developing technologies such as clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, proteomics, super-resolution microscopy and proximity labeling, a large variety of genetically encoded tags have been developed in the last two decades. In this review, I focus on the current status of tag development for electron microscopic (EM) visualization of proteins with metal particle labeling. Compared with conventional immunoelectron microscopy using gold particles, tag-mediated metal particle labeling has several advantages that could potentially improve the sensitivity, spatial and temporal resolution, and applicability to a wide range of proteins of interest (POIs). It may enable researchers to detect single molecules in situ, allowing the quantitative measurement of absolute numbers and exact localization patterns of POI in the ultrastructural context. Thus, genetically encoded tags for EM could revolutionize the field as green fluorescence protein did for light microscopy, although we still have many challenges to overcome before reaching this goal.
期刊介绍:
Microscopy, previously Journal of Electron Microscopy, promotes research combined with any type of microscopy techniques, applied in life and material sciences. Microscopy is the official journal of the Japanese Society of Microscopy.