子系统量子化学项目宁静号

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2022-12-07 DOI:10.1002/wcms.1647
Niklas Niemeyer, Patrick Eschenbach, Moritz Bensberg, Johannes T?lle, Lars Hellmann, Lukas Lampe, Anja Massolle, Anton Rikus, David Schnieders, Jan P. Unsleber, Johannes Neugebauer
{"title":"子系统量子化学项目宁静号","authors":"Niklas Niemeyer,&nbsp;Patrick Eschenbach,&nbsp;Moritz Bensberg,&nbsp;Johannes T?lle,&nbsp;Lars Hellmann,&nbsp;Lukas Lampe,&nbsp;Anja Massolle,&nbsp;Anton Rikus,&nbsp;David Schnieders,&nbsp;Jan P. Unsleber,&nbsp;Johannes Neugebauer","doi":"10.1002/wcms.1647","DOIUrl":null,"url":null,"abstract":"<p>SERENITY [J Comput Chem<i>.</i> 2018;39:788–798] is an open-source quantum chemistry software that provides an extensive development platform focused on quantum-mechanical multilevel and embedding approaches. In this study, we give an overview over the developments done in Serenity since its original publication in 2018. This includes efficient electronic-structure methods for ground states such as multilevel domain-based local pair natural orbital coupled cluster and Møller–Plesset perturbation theory as well as the multistate frozen-density embedding quasi-diabatization method. For the description of excited states, SERENITY features various subsystem-based methods such as embedding variants of coupled time-dependent density-functional theory, approximate second-order coupled cluster theory and the second-order algebraic diagrammatic construction technique as well as GW/Bethe–Salpeter equation approaches. SERENITY's modular structure allows combining these methods with density-functional theory (DFT)-based embedding through various practical realizations and variants of subsystem DFT including frozen-density embedding, potential-reconstruction techniques and projection-based embedding.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 3","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1647","citationCount":"7","resultStr":"{\"title\":\"The subsystem quantum chemistry program Serenity\",\"authors\":\"Niklas Niemeyer,&nbsp;Patrick Eschenbach,&nbsp;Moritz Bensberg,&nbsp;Johannes T?lle,&nbsp;Lars Hellmann,&nbsp;Lukas Lampe,&nbsp;Anja Massolle,&nbsp;Anton Rikus,&nbsp;David Schnieders,&nbsp;Jan P. Unsleber,&nbsp;Johannes Neugebauer\",\"doi\":\"10.1002/wcms.1647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>SERENITY [J Comput Chem<i>.</i> 2018;39:788–798] is an open-source quantum chemistry software that provides an extensive development platform focused on quantum-mechanical multilevel and embedding approaches. In this study, we give an overview over the developments done in Serenity since its original publication in 2018. This includes efficient electronic-structure methods for ground states such as multilevel domain-based local pair natural orbital coupled cluster and Møller–Plesset perturbation theory as well as the multistate frozen-density embedding quasi-diabatization method. For the description of excited states, SERENITY features various subsystem-based methods such as embedding variants of coupled time-dependent density-functional theory, approximate second-order coupled cluster theory and the second-order algebraic diagrammatic construction technique as well as GW/Bethe–Salpeter equation approaches. SERENITY's modular structure allows combining these methods with density-functional theory (DFT)-based embedding through various practical realizations and variants of subsystem DFT including frozen-density embedding, potential-reconstruction techniques and projection-based embedding.</p><p>This article is categorized under:\\n </p>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"13 3\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1647\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1647\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1647","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

SERENITY是一个开源的量子化学软件,提供了一个广泛的开发平台,专注于量子力学的多层次和嵌入方法。在本研究中,我们概述了自2018年首次发布以来在Serenity中所做的发展。这包括有效的基态电子结构方法,如基于多能级域的局域对自然轨道耦合簇和Møller-Plesset微扰理论,以及多态冷冻密度嵌入准糖化方法。对于激发态的描述,SERENITY采用了多种基于子系统的方法,如耦合时相关密度泛函理论的嵌入变体、近似二阶耦合聚类理论和二阶代数图构建技术以及GW/ Bethe-Salpeter方程方法。SERENITY的模块化结构允许将这些方法与基于密度泛函理论(DFT)的嵌入相结合,通过各种实际实现和子系统DFT的变体,包括冻结密度嵌入、潜在重建技术和基于投影的嵌入。本文分类如下:
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The subsystem quantum chemistry program Serenity

SERENITY [J Comput Chem. 2018;39:788–798] is an open-source quantum chemistry software that provides an extensive development platform focused on quantum-mechanical multilevel and embedding approaches. In this study, we give an overview over the developments done in Serenity since its original publication in 2018. This includes efficient electronic-structure methods for ground states such as multilevel domain-based local pair natural orbital coupled cluster and Møller–Plesset perturbation theory as well as the multistate frozen-density embedding quasi-diabatization method. For the description of excited states, SERENITY features various subsystem-based methods such as embedding variants of coupled time-dependent density-functional theory, approximate second-order coupled cluster theory and the second-order algebraic diagrammatic construction technique as well as GW/Bethe–Salpeter equation approaches. SERENITY's modular structure allows combining these methods with density-functional theory (DFT)-based embedding through various practical realizations and variants of subsystem DFT including frozen-density embedding, potential-reconstruction techniques and projection-based embedding.

This article is categorized under:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
期刊最新文献
Issue Information Embedded Many-Body Green's Function Methods for Electronic Excitations in Complex Molecular Systems ROBERT: Bridging the Gap Between Machine Learning and Chemistry Advanced quantum and semiclassical methods for simulating photoinduced molecular dynamics and spectroscopy Computational design of energy-related materials: From first-principles calculations to machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1