听觉幻觉和精神病的昼夜节律

IF 5.6 2区 医学 Q1 PHYSIOLOGY Acta Physiologica Pub Date : 2023-02-06 DOI:10.1111/apha.13944
Hong-Viet V. Ngo, Henrik Oster, Christina Andreou, Jonas Obleser
{"title":"听觉幻觉和精神病的昼夜节律","authors":"Hong-Viet V. Ngo,&nbsp;Henrik Oster,&nbsp;Christina Andreou,&nbsp;Jonas Obleser","doi":"10.1111/apha.13944","DOIUrl":null,"url":null,"abstract":"<p>Circadian rhythms are imprinted in all organisms and influence virtually all aspects of physiology and behavior in adaptation to the 24-h day–night cycle. This recognition of a circadian timekeeping system permeating essentially all healthy functioning of body and mind quickly leads to the realization that, in turn, human ailments should be probed for the degree to which they are rooted in or marked by disruptions and dysregulations of circadian clock functions in the human body. In this review, we will focus on psychosis as a key mental illness and foremost one of its cardinal symptoms: auditory hallucinations. We will discuss recent empirical evidence and conceptual advances probing the potential role of circadian disruption in auditory hallucinations. Moreover, a dysbalance in excitation and inhibition within cortical networks, which in turn drive a disinhibition of dopaminergic signaling, will be highlighted as central physiological mechanism. Finally, we will propose two avenues for experimentally intervening on the circadian influences to potentially alleviate hallucinations in psychotic disorders.</p>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"237 4","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.13944","citationCount":"1","resultStr":"{\"title\":\"Circadian rhythms in auditory hallucinations and psychosis\",\"authors\":\"Hong-Viet V. Ngo,&nbsp;Henrik Oster,&nbsp;Christina Andreou,&nbsp;Jonas Obleser\",\"doi\":\"10.1111/apha.13944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Circadian rhythms are imprinted in all organisms and influence virtually all aspects of physiology and behavior in adaptation to the 24-h day–night cycle. This recognition of a circadian timekeeping system permeating essentially all healthy functioning of body and mind quickly leads to the realization that, in turn, human ailments should be probed for the degree to which they are rooted in or marked by disruptions and dysregulations of circadian clock functions in the human body. In this review, we will focus on psychosis as a key mental illness and foremost one of its cardinal symptoms: auditory hallucinations. We will discuss recent empirical evidence and conceptual advances probing the potential role of circadian disruption in auditory hallucinations. Moreover, a dysbalance in excitation and inhibition within cortical networks, which in turn drive a disinhibition of dopaminergic signaling, will be highlighted as central physiological mechanism. Finally, we will propose two avenues for experimentally intervening on the circadian influences to potentially alleviate hallucinations in psychotic disorders.</p>\",\"PeriodicalId\":107,\"journal\":{\"name\":\"Acta Physiologica\",\"volume\":\"237 4\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.13944\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physiologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/apha.13944\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologica","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/apha.13944","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

昼夜节律在所有生物体中都有印记,并影响着适应24小时昼夜循环的生理和行为的几乎所有方面。认识到昼夜节律计时系统基本上渗透了身体和精神的所有健康功能,这很快使人们认识到,反过来,人类的疾病应该被探测到它们根植于人体生物钟功能的破坏和失调的程度。在这篇综述中,我们将重点介绍精神病作为一种关键的精神疾病和它的主要症状之一:幻听。我们将讨论最近的经验证据和概念上的进展,探讨昼夜节律中断在幻听中的潜在作用。此外,皮层网络中兴奋和抑制的失衡,反过来又驱动多巴胺能信号的去抑制,将被强调为中心生理机制。最后,我们将提出两种途径,通过实验干预昼夜节律的影响,以潜在地减轻精神障碍中的幻觉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Circadian rhythms in auditory hallucinations and psychosis

Circadian rhythms are imprinted in all organisms and influence virtually all aspects of physiology and behavior in adaptation to the 24-h day–night cycle. This recognition of a circadian timekeeping system permeating essentially all healthy functioning of body and mind quickly leads to the realization that, in turn, human ailments should be probed for the degree to which they are rooted in or marked by disruptions and dysregulations of circadian clock functions in the human body. In this review, we will focus on psychosis as a key mental illness and foremost one of its cardinal symptoms: auditory hallucinations. We will discuss recent empirical evidence and conceptual advances probing the potential role of circadian disruption in auditory hallucinations. Moreover, a dysbalance in excitation and inhibition within cortical networks, which in turn drive a disinhibition of dopaminergic signaling, will be highlighted as central physiological mechanism. Finally, we will propose two avenues for experimentally intervening on the circadian influences to potentially alleviate hallucinations in psychotic disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physiologica
Acta Physiologica 医学-生理学
CiteScore
11.80
自引率
15.90%
发文量
182
审稿时长
4-8 weeks
期刊介绍: Acta Physiologica is an important forum for the publication of high quality original research in physiology and related areas by authors from all over the world. Acta Physiologica is a leading journal in human/translational physiology while promoting all aspects of the science of physiology. The journal publishes full length original articles on important new observations as well as reviews and commentaries.
期刊最新文献
Correction to "Beneficial effects of MGL-3196 and BAM15 combination in a mouse model of fatty liver disease". Issue Information Impaired suppression of fatty acid release by insulin is a strong predictor of reduced whole-body insulin-mediated glucose uptake and skeletal muscle insulin receptor activation. Differential production of mitochondrial reactive oxygen species between mouse (Mus musculus) and crucian carp (Carassius carassius) A quantitative analysis of bestrophin 1 cellular localization in mouse cerebral cortex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1