{"title":"基于随机线性网络编码的双向通道V2V网络中的高效通信。","authors":"Yiqian Zhang, Tiantian Zhu, Congduan Li","doi":"10.3390/e25101454","DOIUrl":null,"url":null,"abstract":"Vehicle-to-vehicle (V2V) communication has gained significant attention in the field of intelligent transportation systems. In this paper, we focus on communication scenarios involving vehicles moving in the same and opposite directions. Specifically, we model a V2V network as a dynamic multi-source single-sink network with two-way lanes. To address rapid changes in network topology, we employ random linear network coding (RLNC), which eliminates the need for knowledge of the network topology. We begin by deriving the lower bound for the generation probability. Through simulations, we analyzed the probability distribution and cumulative probability distribution of latency under varying packet loss rates and batch sizes. Our results demonstrated that our RLNC scheme significantly reduced the communication latency, even under challenging channel conditions, when compared to the non-coding case.","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"25 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606670/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient Communications in V2V Networks with Two-Way Lanes Based on Random Linear Network Coding.\",\"authors\":\"Yiqian Zhang, Tiantian Zhu, Congduan Li\",\"doi\":\"10.3390/e25101454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle-to-vehicle (V2V) communication has gained significant attention in the field of intelligent transportation systems. In this paper, we focus on communication scenarios involving vehicles moving in the same and opposite directions. Specifically, we model a V2V network as a dynamic multi-source single-sink network with two-way lanes. To address rapid changes in network topology, we employ random linear network coding (RLNC), which eliminates the need for knowledge of the network topology. We begin by deriving the lower bound for the generation probability. Through simulations, we analyzed the probability distribution and cumulative probability distribution of latency under varying packet loss rates and batch sizes. Our results demonstrated that our RLNC scheme significantly reduced the communication latency, even under challenging channel conditions, when compared to the non-coding case.\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"25 10\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606670/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e25101454\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e25101454","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficient Communications in V2V Networks with Two-Way Lanes Based on Random Linear Network Coding.
Vehicle-to-vehicle (V2V) communication has gained significant attention in the field of intelligent transportation systems. In this paper, we focus on communication scenarios involving vehicles moving in the same and opposite directions. Specifically, we model a V2V network as a dynamic multi-source single-sink network with two-way lanes. To address rapid changes in network topology, we employ random linear network coding (RLNC), which eliminates the need for knowledge of the network topology. We begin by deriving the lower bound for the generation probability. Through simulations, we analyzed the probability distribution and cumulative probability distribution of latency under varying packet loss rates and batch sizes. Our results demonstrated that our RLNC scheme significantly reduced the communication latency, even under challenging channel conditions, when compared to the non-coding case.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.