{"title":"基于离散小波变换和定子电流测量信号的异步电动机单故障和多故障阈值诊断","authors":"M. Z. Ali, Xiaodong Liang","doi":"10.1109/CJECE.2020.2966114","DOIUrl":null,"url":null,"abstract":"In this article, a threshold-based induction motor fault diagnosis method is proposed using the measured stator current signal. A 0.25-HP three-phase squirrel-cage induction motor fed directly online is tested in the laboratory with various single- and multielectrical faults under six different loading conditions. The discrete wavelet transform (DWT) is chosen as the signal processing technique for the measured stator currents. The threshold and energy values at each decomposition level of the DWT processing results are evaluated. Threshold values appear to be more consistent than energy values at different measured data windows, and thus, the threshold at the decomposition level d8 is chosen as a fault indicator. Curve fitting equations are developed to calculate threshold values for the motor loadings that were not tested in experiments. The suitability using threshold values for induction motor fault diagnosis is further validated using two probabilistic methods, the correlation analysis and the confidence interval estimation.","PeriodicalId":55287,"journal":{"name":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CJECE.2020.2966114","citationCount":"8","resultStr":"{\"title\":\"Threshold-Based Induction Motors Single- and Multifaults Diagnosis Using Discrete Wavelet Transform and Measured Stator Current Signal\",\"authors\":\"M. Z. Ali, Xiaodong Liang\",\"doi\":\"10.1109/CJECE.2020.2966114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a threshold-based induction motor fault diagnosis method is proposed using the measured stator current signal. A 0.25-HP three-phase squirrel-cage induction motor fed directly online is tested in the laboratory with various single- and multielectrical faults under six different loading conditions. The discrete wavelet transform (DWT) is chosen as the signal processing technique for the measured stator currents. The threshold and energy values at each decomposition level of the DWT processing results are evaluated. Threshold values appear to be more consistent than energy values at different measured data windows, and thus, the threshold at the decomposition level d8 is chosen as a fault indicator. Curve fitting equations are developed to calculate threshold values for the motor loadings that were not tested in experiments. The suitability using threshold values for induction motor fault diagnosis is further validated using two probabilistic methods, the correlation analysis and the confidence interval estimation.\",\"PeriodicalId\":55287,\"journal\":{\"name\":\"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/CJECE.2020.2966114\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CJECE.2020.2966114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CJECE.2020.2966114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Threshold-Based Induction Motors Single- and Multifaults Diagnosis Using Discrete Wavelet Transform and Measured Stator Current Signal
In this article, a threshold-based induction motor fault diagnosis method is proposed using the measured stator current signal. A 0.25-HP three-phase squirrel-cage induction motor fed directly online is tested in the laboratory with various single- and multielectrical faults under six different loading conditions. The discrete wavelet transform (DWT) is chosen as the signal processing technique for the measured stator currents. The threshold and energy values at each decomposition level of the DWT processing results are evaluated. Threshold values appear to be more consistent than energy values at different measured data windows, and thus, the threshold at the decomposition level d8 is chosen as a fault indicator. Curve fitting equations are developed to calculate threshold values for the motor loadings that were not tested in experiments. The suitability using threshold values for induction motor fault diagnosis is further validated using two probabilistic methods, the correlation analysis and the confidence interval estimation.
期刊介绍:
The Canadian Journal of Electrical and Computer Engineering (ISSN-0840-8688), issued quarterly, has been publishing high-quality refereed scientific papers in all areas of electrical and computer engineering since 1976