基于马尔可夫链的织物感知电容提取分层算法

T. El-Moselhy, Ibrahim M. Elfadel, Luca Daniel
{"title":"基于马尔可夫链的织物感知电容提取分层算法","authors":"T. El-Moselhy, Ibrahim M. Elfadel, Luca Daniel","doi":"10.1109/TADVP.2010.2091504","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a hierarchical algorithm to compute the 3-D capacitances of a large number of topologically different layout configurations that are all assembled from the same basic layout motifs. Our algorithm uses the boundary element method in order to compute a Markov transition matrix (MTM) for each motif. The individual motifs are connected together by building a large Markov chain. Such Markov chain can be simulated extremely efficiently using Monte Carlo simulations (e.g., random walks). The main practical advantage of the proposed algorithm is its ability to extract the capacitance of a large number of layout configurations in a complexity that is basically independent of the number of configurations. For instance, in a large 3-D layout example, the capacitance calculation of 1000 different configurations assembled from the same motifs is accomplished in the time required to solve independently two configurations, i.e., a 500 × speedup.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"33 1","pages":"818-827"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2010.2091504","citationCount":"16","resultStr":"{\"title\":\"A Markov Chain Based Hierarchical Algorithm for Fabric-Aware Capacitance Extraction\",\"authors\":\"T. El-Moselhy, Ibrahim M. Elfadel, Luca Daniel\",\"doi\":\"10.1109/TADVP.2010.2091504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a hierarchical algorithm to compute the 3-D capacitances of a large number of topologically different layout configurations that are all assembled from the same basic layout motifs. Our algorithm uses the boundary element method in order to compute a Markov transition matrix (MTM) for each motif. The individual motifs are connected together by building a large Markov chain. Such Markov chain can be simulated extremely efficiently using Monte Carlo simulations (e.g., random walks). The main practical advantage of the proposed algorithm is its ability to extract the capacitance of a large number of layout configurations in a complexity that is basically independent of the number of configurations. For instance, in a large 3-D layout example, the capacitance calculation of 1000 different configurations assembled from the same motifs is accomplished in the time required to solve independently two configurations, i.e., a 500 × speedup.\",\"PeriodicalId\":55015,\"journal\":{\"name\":\"IEEE Transactions on Advanced Packaging\",\"volume\":\"33 1\",\"pages\":\"818-827\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TADVP.2010.2091504\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Advanced Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TADVP.2010.2091504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Advanced Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TADVP.2010.2091504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我们提出了一种分层算法来计算大量拓扑不同的布局构型的三维电容,这些布局构型都是由相同的基本布局基元组装而成的。我们的算法使用边界元方法来计算每个基序的马尔可夫转移矩阵(MTM)。单个的图案通过建立一个大的马尔可夫链连接在一起。这样的马尔可夫链可以非常有效地模拟使用蒙特卡罗模拟(例如,随机漫步)。该算法的主要实用优点是能够在基本上与配置数量无关的复杂度下提取大量布局配置的电容。例如,在一个大型三维布局示例中,由相同的模块组装而成的1000种不同构型的电容计算,在独立求解两种构型所需的时间内完成,即加速500倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Markov Chain Based Hierarchical Algorithm for Fabric-Aware Capacitance Extraction
In this paper, we propose a hierarchical algorithm to compute the 3-D capacitances of a large number of topologically different layout configurations that are all assembled from the same basic layout motifs. Our algorithm uses the boundary element method in order to compute a Markov transition matrix (MTM) for each motif. The individual motifs are connected together by building a large Markov chain. Such Markov chain can be simulated extremely efficiently using Monte Carlo simulations (e.g., random walks). The main practical advantage of the proposed algorithm is its ability to extract the capacitance of a large number of layout configurations in a complexity that is basically independent of the number of configurations. For instance, in a large 3-D layout example, the capacitance calculation of 1000 different configurations assembled from the same motifs is accomplished in the time required to solve independently two configurations, i.e., a 500 × speedup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Advanced Packaging
IEEE Transactions on Advanced Packaging 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
6 months
期刊最新文献
Foreword Special Section on Recent Progress in Electrical Modeling and Simulation of High-Speed ICs and Packages Random Rough Surface Effects on Wave Propagation in Interconnects A Markov Chain Based Hierarchical Algorithm for Fabric-Aware Capacitance Extraction A Novel High-Capacity Electromagnetic Compression Technique Based on a Direct Matrix Solution Accurate Characterization of Broadband Multiconductor Transmission Lines for High-Speed Digital Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1