Pub Date : 2010-12-17DOI: 10.1109/TADVP.2010.2089788
Youngae Han, Jinsong Zhao
Electromagnetic solvers based on integral equations in conjunction with the method of moments or the partial element equivalent circuit method (PEEC) proved to be popular because of their efficiency and accuracy. There is one serious drawback of the integral equation approach: it often leads to a linear system involving a full matrix. Many efficient approaches have been proposed to overcome this, largely based on compressing the matrix-vector product operation and using an iterative solver. Iterative EM solvers, however, suffer from slow convergence, which does not have a totally reliable method to address; further, large multiple right-hand sides significantly increase the solving time. In this paper, we present a novel method to compress low rank sub-block matrixes into sparse matrix to be used with a direct sparse matrix solver to obtain an efficient high-capacity electromagnetic solver based on an integral equation formulation. The full-rank system matrix is represented in a hierarchical matrix format that has its sub-matrixes compressed with numerically controllable accuracy; it is then analytically converted to a sparse matrix which is further solved by a direct sparse matrix solver. Analytically this method results in O(N (log N)2) complexity for computing the inverse of a hierarchical matrix presented in Fig. 2 where N is the number of unknowns.
{"title":"A Novel High-Capacity Electromagnetic Compression Technique Based on a Direct Matrix Solution","authors":"Youngae Han, Jinsong Zhao","doi":"10.1109/TADVP.2010.2089788","DOIUrl":"https://doi.org/10.1109/TADVP.2010.2089788","url":null,"abstract":"Electromagnetic solvers based on integral equations in conjunction with the method of moments or the partial element equivalent circuit method (PEEC) proved to be popular because of their efficiency and accuracy. There is one serious drawback of the integral equation approach: it often leads to a linear system involving a full matrix. Many efficient approaches have been proposed to overcome this, largely based on compressing the matrix-vector product operation and using an iterative solver. Iterative EM solvers, however, suffer from slow convergence, which does not have a totally reliable method to address; further, large multiple right-hand sides significantly increase the solving time. In this paper, we present a novel method to compress low rank sub-block matrixes into sparse matrix to be used with a direct sparse matrix solver to obtain an efficient high-capacity electromagnetic solver based on an integral equation formulation. The full-rank system matrix is represented in a hierarchical matrix format that has its sub-matrixes compressed with numerically controllable accuracy; it is then analytically converted to a sparse matrix which is further solved by a direct sparse matrix solver. Analytically this method results in O(N (log N)2) complexity for computing the inverse of a hierarchical matrix presented in Fig. 2 where N is the number of unknowns.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"65 1","pages":"787-793"},"PeriodicalIF":0.0,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2010.2089788","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62400438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-12-17DOI: 10.1109/TADVP.2010.2089789
L. Tsang, H. Braunisch, R. Ding, X. Gu
To address the rough surface effects in high-speed interconnects on printed circuit boards (PCBs) and microelectronic packages, we study the electromagnetic wave propagation in a rough surface environment. In our model, the rough surface is characterized by a stochastic random process with correlation function or spectral density. This paper reviews the analytical theory, numerical simulations and experimental results based on such a model. We describe the rough surface characterization and the extraction of roughness parameters from 3D profile measurements. Initially we study the 2D case with the rough surface height function varying in only one horizontal direction and consider the case of plane wave incidence. Analytic second-order small perturbation method (SPM2) was used to obtain simple closed-form expressions for the absorption enhancement factor. The numerical transfer matrix (T-matrix) method and the method of moments (MoM) were also used. We next consider the case of the 3D problem with the rough surface height varying in both horizontal directions. We also used SPM2 to obtain a simple closed form expression for the enhancement factor. In interconnect problems, electromagnetic (EM) waves propagate in a guided wave environment. Thus, we next considered a waveguide model to study the effects of random roughness on wave propagation and compare with results from the plane wave formulation. Analytic SPM2 and numerical finite element method (FEM) with mode matching were used to obtain the enhancement factor. We also describe experimental results and correlation with the theoretical models. Finally, we explain how the enhancement factor concept used throughout lends itself to direct inclusion of rough surface effects in a wide variety of modeling problems.
{"title":"Random Rough Surface Effects on Wave Propagation in Interconnects","authors":"L. Tsang, H. Braunisch, R. Ding, X. Gu","doi":"10.1109/TADVP.2010.2089789","DOIUrl":"https://doi.org/10.1109/TADVP.2010.2089789","url":null,"abstract":"To address the rough surface effects in high-speed interconnects on printed circuit boards (PCBs) and microelectronic packages, we study the electromagnetic wave propagation in a rough surface environment. In our model, the rough surface is characterized by a stochastic random process with correlation function or spectral density. This paper reviews the analytical theory, numerical simulations and experimental results based on such a model. We describe the rough surface characterization and the extraction of roughness parameters from 3D profile measurements. Initially we study the 2D case with the rough surface height function varying in only one horizontal direction and consider the case of plane wave incidence. Analytic second-order small perturbation method (SPM2) was used to obtain simple closed-form expressions for the absorption enhancement factor. The numerical transfer matrix (T-matrix) method and the method of moments (MoM) were also used. We next consider the case of the 3D problem with the rough surface height varying in both horizontal directions. We also used SPM2 to obtain a simple closed form expression for the enhancement factor. In interconnect problems, electromagnetic (EM) waves propagate in a guided wave environment. Thus, we next considered a waveguide model to study the effects of random roughness on wave propagation and compare with results from the plane wave formulation. Analytic SPM2 and numerical finite element method (FEM) with mode matching were used to obtain the enhancement factor. We also describe experimental results and correlation with the theoretical models. Finally, we explain how the enhancement factor concept used throughout lends itself to direct inclusion of rough surface effects in a wide variety of modeling problems.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"77 1","pages":"839-856"},"PeriodicalIF":0.0,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2010.2089789","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62400154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-12-17DOI: 10.1109/TADVP.2010.2099155
D. Jiao
{"title":"Foreword Special Section on Recent Progress in Electrical Modeling and Simulation of High-Speed ICs and Packages","authors":"D. Jiao","doi":"10.1109/TADVP.2010.2099155","DOIUrl":"https://doi.org/10.1109/TADVP.2010.2099155","url":null,"abstract":"","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"33 1","pages":"758-759"},"PeriodicalIF":0.0,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2010.2099155","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62399999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-12-17DOI: 10.1109/TADVP.2010.2091504
T. El-Moselhy, Ibrahim M. Elfadel, Luca Daniel
In this paper, we propose a hierarchical algorithm to compute the 3-D capacitances of a large number of topologically different layout configurations that are all assembled from the same basic layout motifs. Our algorithm uses the boundary element method in order to compute a Markov transition matrix (MTM) for each motif. The individual motifs are connected together by building a large Markov chain. Such Markov chain can be simulated extremely efficiently using Monte Carlo simulations (e.g., random walks). The main practical advantage of the proposed algorithm is its ability to extract the capacitance of a large number of layout configurations in a complexity that is basically independent of the number of configurations. For instance, in a large 3-D layout example, the capacitance calculation of 1000 different configurations assembled from the same motifs is accomplished in the time required to solve independently two configurations, i.e., a 500 × speedup.
{"title":"A Markov Chain Based Hierarchical Algorithm for Fabric-Aware Capacitance Extraction","authors":"T. El-Moselhy, Ibrahim M. Elfadel, Luca Daniel","doi":"10.1109/TADVP.2010.2091504","DOIUrl":"https://doi.org/10.1109/TADVP.2010.2091504","url":null,"abstract":"In this paper, we propose a hierarchical algorithm to compute the 3-D capacitances of a large number of topologically different layout configurations that are all assembled from the same basic layout motifs. Our algorithm uses the boundary element method in order to compute a Markov transition matrix (MTM) for each motif. The individual motifs are connected together by building a large Markov chain. Such Markov chain can be simulated extremely efficiently using Monte Carlo simulations (e.g., random walks). The main practical advantage of the proposed algorithm is its ability to extract the capacitance of a large number of layout configurations in a complexity that is basically independent of the number of configurations. For instance, in a large 3-D layout example, the capacitance calculation of 1000 different configurations assembled from the same motifs is accomplished in the time required to solve independently two configurations, i.e., a 500 × speedup.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"33 1","pages":"818-827"},"PeriodicalIF":0.0,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2010.2091504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62400385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-11-01DOI: 10.1109/TADVP.2010.2090348
Lijun Jiang, Chuan Xu, B. Rubin, A. Weger, A. Deutsch, H. Smith, A. Caron, K. Banerjee
To reduce the product development time and achieve first-pass silicon success, fast and accurate estimation of very-large-scale integration (VLSI) interconnect, packaging and 3DI (3D integrated circuits) thermal profiles has become important. Present commercial thermal analysis tools are incapable of handling very complex structures and have integration difficulties with existing design flows. Many analytical thermal models, which could provide fast estimates, are either too specific or oversimplified. This paper highlights a methodology, which exploits electrical resistance solvers for thermal simulation, to allow acquisition of thermal profiles of complex structures with good accuracy and reasonable computation cost. Moreover, a novel accurate closed-form thermal model is developed. The model allows an isotropic or anisotropic equivalent medium to replace the noncritical back-end-of-line (BEOL) regions so that the simulation complexity is dramatically reduced. Using these techniques, this paper introduces the thermal modeling of practical complex VLSI structures to facilitate thermal guideline generation. It also demonstrates the benefits of the proposed anisotropic equivalent medium approximation for real VLSI structures in terms of the accuracy and computational cost.
{"title":"A Thermal Simulation Process Based on Electrical Modeling for Complex Interconnect, Packaging, and 3DI Structures","authors":"Lijun Jiang, Chuan Xu, B. Rubin, A. Weger, A. Deutsch, H. Smith, A. Caron, K. Banerjee","doi":"10.1109/TADVP.2010.2090348","DOIUrl":"https://doi.org/10.1109/TADVP.2010.2090348","url":null,"abstract":"To reduce the product development time and achieve first-pass silicon success, fast and accurate estimation of very-large-scale integration (VLSI) interconnect, packaging and 3DI (3D integrated circuits) thermal profiles has become important. Present commercial thermal analysis tools are incapable of handling very complex structures and have integration difficulties with existing design flows. Many analytical thermal models, which could provide fast estimates, are either too specific or oversimplified. This paper highlights a methodology, which exploits electrical resistance solvers for thermal simulation, to allow acquisition of thermal profiles of complex structures with good accuracy and reasonable computation cost. Moreover, a novel accurate closed-form thermal model is developed. The model allows an isotropic or anisotropic equivalent medium to replace the noncritical back-end-of-line (BEOL) regions so that the simulation complexity is dramatically reduced. Using these techniques, this paper introduces the thermal modeling of practical complex VLSI structures to facilitate thermal guideline generation. It also demonstrates the benefits of the proposed anisotropic equivalent medium approximation for real VLSI structures in terms of the accuracy and computational cost.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"33 1","pages":"777-786"},"PeriodicalIF":0.0,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2010.2090348","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62400277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-11-01DOI: 10.1109/TADVP.2010.2050204
Joong-Ho Kim, D. Oh, Woopoung Kim
Accurate modeling of transmission lines becomes increasingly important in high-speed interconnect system design. However, it is rather difficult to obtain broadband transmission line models, in particular using frequency-domain measurements. This paper points out two potential accuracy issues. First, inaccurate DC values of the frequency-domain data cause a severe error in the time-domain simulations. Second, it is difficult to characterize the characteristic impedance over a wide frequency range due to the reflection caused by the port discontinuities. This paper proposes the combination of both time and frequency measurement data to mitigate the DC accuracy issue. For the characteristic impedance model, a new de-embedding technique is presented to mitigate the port discontinuity issue. Several numerical examples, such as MCM-L coplanar lines and package microstrip lines, are studied to validate the accuracy of the proposed method.
{"title":"Accurate Characterization of Broadband Multiconductor Transmission Lines for High-Speed Digital Systems","authors":"Joong-Ho Kim, D. Oh, Woopoung Kim","doi":"10.1109/TADVP.2010.2050204","DOIUrl":"https://doi.org/10.1109/TADVP.2010.2050204","url":null,"abstract":"Accurate modeling of transmission lines becomes increasingly important in high-speed interconnect system design. However, it is rather difficult to obtain broadband transmission line models, in particular using frequency-domain measurements. This paper points out two potential accuracy issues. First, inaccurate DC values of the frequency-domain data cause a severe error in the time-domain simulations. Second, it is difficult to characterize the characteristic impedance over a wide frequency range due to the reflection caused by the port discontinuities. This paper proposes the combination of both time and frequency measurement data to mitigate the DC accuracy issue. For the characteristic impedance model, a new de-embedding technique is presented to mitigate the port discontinuity issue. Several numerical examples, such as MCM-L coplanar lines and package microstrip lines, are studied to validate the accuracy of the proposed method.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"33 1","pages":"857-867"},"PeriodicalIF":0.0,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2010.2050204","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62398537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-10-14DOI: 10.1109/TADVP.2010.2081987
Rongwei Zhang, K. Moon, Wei Lin, Yiqun Duan, S. Lotz, C. Wong
Anisotropic conductive adhesives (ACAs) have been considered a promising interconnect material for next generation high performance devices. However, high joint resistance and low current carrying capability of ACA interconnects have been the limitations to utilizing ACAs in high power devices. In this study, we have introduced conjugated dithiols into ACA formulations to create molecular wire junctions between conductive fillers and metal pads as a means to facilitate the electron transport through the ACA joints. With the introduction of molecular wires, there is evidence of measured improvements in both the electrical conductivity and current carrying capability. The factors leading to these improvements in electrical properties are also discussed.
{"title":"Interfacial Design of Anisotropic Conductive Adhesive Based Interconnects Using Molecular Wires and Understanding of Their Electrical Conduction","authors":"Rongwei Zhang, K. Moon, Wei Lin, Yiqun Duan, S. Lotz, C. Wong","doi":"10.1109/TADVP.2010.2081987","DOIUrl":"https://doi.org/10.1109/TADVP.2010.2081987","url":null,"abstract":"Anisotropic conductive adhesives (ACAs) have been considered a promising interconnect material for next generation high performance devices. However, high joint resistance and low current carrying capability of ACA interconnects have been the limitations to utilizing ACAs in high power devices. In this study, we have introduced conjugated dithiols into ACA formulations to create molecular wire junctions between conductive fillers and metal pads as a means to facilitate the electron transport through the ACA joints. With the introduction of molecular wires, there is evidence of measured improvements in both the electrical conductivity and current carrying capability. The factors leading to these improvements in electrical properties are also discussed.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"33 1","pages":"892-898"},"PeriodicalIF":0.0,"publicationDate":"2010-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2010.2081987","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62399772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-10-04DOI: 10.1109/TADVP.2010.2077287
C. Gazda, D. Vande Ginste, H. Rogier, R. Wu, D. De Zutter
A new type of bend is proposed that reduces differential-to-common mode conversion occuring at the bend discontinuity in coupled microstrip lines for high-speed digital circuits. Simultaneously, great care has been taken to minimize the differential reflection coefficient and insertion loss, leading to an overall improved signal integrity. This is achieved by tapering the microstrip lines to tightly or very tightly coupled ones in the area of the bend. Full-wave simulations in the DC to 6 GHz frequency range show that over 9 dB and 14 dB suppression of conversion noise is achieved for tightly coupled and very tightly coupled bends, respectively. Also for these new structures, with a total length of 100 mm, the insertion loss remains below 0.6 dB. Measurements on prototype bends show very good agreement with full-wave simulations. Also time domain measurements demonstrate the significant reduction in conversion noise while keeping return loss low. Moreover, for design purposes, a dedicated circuit model which closely matches the full-wave characteristics of the proposed bends is presented.
{"title":"A Wideband Common-Mode Suppression Filter for Bend Discontinuities in Differential Signaling Using Tightly Coupled Microstrips","authors":"C. Gazda, D. Vande Ginste, H. Rogier, R. Wu, D. De Zutter","doi":"10.1109/TADVP.2010.2077287","DOIUrl":"https://doi.org/10.1109/TADVP.2010.2077287","url":null,"abstract":"A new type of bend is proposed that reduces differential-to-common mode conversion occuring at the bend discontinuity in coupled microstrip lines for high-speed digital circuits. Simultaneously, great care has been taken to minimize the differential reflection coefficient and insertion loss, leading to an overall improved signal integrity. This is achieved by tapering the microstrip lines to tightly or very tightly coupled ones in the area of the bend. Full-wave simulations in the DC to 6 GHz frequency range show that over 9 dB and 14 dB suppression of conversion noise is achieved for tightly coupled and very tightly coupled bends, respectively. Also for these new structures, with a total length of 100 mm, the insertion loss remains below 0.6 dB. Measurements on prototype bends show very good agreement with full-wave simulations. Also time domain measurements demonstrate the significant reduction in conversion noise while keeping return loss low. Moreover, for design purposes, a dedicated circuit model which closely matches the full-wave characteristics of the proposed bends is presented.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"33 1","pages":"969-978"},"PeriodicalIF":0.0,"publicationDate":"2010-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2010.2077287","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62399567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-10-04DOI: 10.1109/TADVP.2010.2074201
M. Miana, C. Cortés, J. Pelegay, J. R. Valdés, T. Pütz, M. Moczala
This paper applies the methodology of transient thermal network modelling (TTNM) introduced in Part I to the heat transfer analysis of an electronic control unit (ECU) located in the engine enclosure of a motorcar. The complexity of the geometry, the diverse heat transfer mechanisms involved and the duration of the operating cycle prevent the use of both simple, lumped models and detailed numerical simulations. The TTNM methodology relies instead in steady, approximate heat transfer correlations and a division of the system into the largest possible isothermal elements, based on the analysis of characteristic time and length scales. The dynamic heat balance of each element is then written down, conforming the TTNM of the system, which is numerically integrated with an adequate time step. The practical aspects of the TTNM methodology (design stage) are finally demonstrated; in this particular case-study, the model reveals a very high risk of damage of electronic components due to the radiative heat load received from the exhaust pipe of the engine. A design modification consisting of a radiative shield is proposed and model-tested, achieving an appropriate reduction of heat flux and temperatures, and thus an adequate protection of critical components.
{"title":"Transient Thermal Network Modeling Applied to Multiscale Systems. Part II: Application to an Electronic Control Unit of an Automobile","authors":"M. Miana, C. Cortés, J. Pelegay, J. R. Valdés, T. Pütz, M. Moczala","doi":"10.1109/TADVP.2010.2074201","DOIUrl":"https://doi.org/10.1109/TADVP.2010.2074201","url":null,"abstract":"This paper applies the methodology of transient thermal network modelling (TTNM) introduced in Part I to the heat transfer analysis of an electronic control unit (ECU) located in the engine enclosure of a motorcar. The complexity of the geometry, the diverse heat transfer mechanisms involved and the duration of the operating cycle prevent the use of both simple, lumped models and detailed numerical simulations. The TTNM methodology relies instead in steady, approximate heat transfer correlations and a division of the system into the largest possible isothermal elements, based on the analysis of characteristic time and length scales. The dynamic heat balance of each element is then written down, conforming the TTNM of the system, which is numerically integrated with an adequate time step. The practical aspects of the TTNM methodology (design stage) are finally demonstrated; in this particular case-study, the model reveals a very high risk of damage of electronic components due to the radiative heat load received from the exhaust pipe of the engine. A design modification consisting of a radiative shield is proposed and model-tested, achieving an appropriate reduction of heat flux and temperatures, and thus an adequate protection of critical components.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"32 1","pages":"938-952"},"PeriodicalIF":0.0,"publicationDate":"2010-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2010.2074201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62399515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-10-04DOI: 10.1109/TADVP.2010.2074200
M. Miana, C. Cortés, J. Pelegay, J. R. Valdés, T. Pütz
This paper formulates the methodology of transient thermal network modeling (TTNM) for the study of unsteady heat transfer in systems where the presence of multiple length and time scales prevents the analysis by means of current computational or experimental techniques. The TTNM is based on reduced order models (ROMs) and it is established under the essential premise that a transient heat transfer process can be modeled by its division in a succession of stationary states and the division of the geometry in isothermal elements, according to the characteristic time and length scales obtained by scale analysis. The methodology is subsequently validated with canonical examples and considerations are given for the application to practical problems.
{"title":"Transient Thermal Network Modeling Applied to Multiscale Systems. Part I: Definition and Validation","authors":"M. Miana, C. Cortés, J. Pelegay, J. R. Valdés, T. Pütz","doi":"10.1109/TADVP.2010.2074200","DOIUrl":"https://doi.org/10.1109/TADVP.2010.2074200","url":null,"abstract":"This paper formulates the methodology of transient thermal network modeling (TTNM) for the study of unsteady heat transfer in systems where the presence of multiple length and time scales prevents the analysis by means of current computational or experimental techniques. The TTNM is based on reduced order models (ROMs) and it is established under the essential premise that a transient heat transfer process can be modeled by its division in a succession of stationary states and the division of the geometry in isothermal elements, according to the characteristic time and length scales obtained by scale analysis. The methodology is subsequently validated with canonical examples and considerations are given for the application to practical problems.","PeriodicalId":55015,"journal":{"name":"IEEE Transactions on Advanced Packaging","volume":"33 1","pages":"924-937"},"PeriodicalIF":0.0,"publicationDate":"2010-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TADVP.2010.2074200","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62399926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}