{"title":"一种基于聚酰亚胺的超薄芯片封装新技术","authors":"W. Christiaens, E. Bosman, J. Vanfleteren","doi":"10.1109/TCAPT.2010.2060198","DOIUrl":null,"url":null,"abstract":"Flexible materials, today, are being used already as base substrates for electronic assembly. A lot of mounted components could be integrated in flexible polyimide (PI) substrates. Very interesting advantages of integrating components into the flex are compactness and enhanced flexibility; not only the interconnection but also the components themselves can be mechanically flexible. This paper describes a PI-based embedding technology for integrating very thin silicon chips in between two spin-on PI layers, the ultra-thin chip package (UTCP). This paper discusses the different process steps in the UTCP production and also presents the interconnection test results realized with this technology.","PeriodicalId":55013,"journal":{"name":"IEEE Transactions on Components and Packaging Technologies","volume":"33 1","pages":"754-760"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCAPT.2010.2060198","citationCount":"65","resultStr":"{\"title\":\"UTCP: A Novel Polyimide-Based Ultra-Thin Chip Packaging Technology\",\"authors\":\"W. Christiaens, E. Bosman, J. Vanfleteren\",\"doi\":\"10.1109/TCAPT.2010.2060198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible materials, today, are being used already as base substrates for electronic assembly. A lot of mounted components could be integrated in flexible polyimide (PI) substrates. Very interesting advantages of integrating components into the flex are compactness and enhanced flexibility; not only the interconnection but also the components themselves can be mechanically flexible. This paper describes a PI-based embedding technology for integrating very thin silicon chips in between two spin-on PI layers, the ultra-thin chip package (UTCP). This paper discusses the different process steps in the UTCP production and also presents the interconnection test results realized with this technology.\",\"PeriodicalId\":55013,\"journal\":{\"name\":\"IEEE Transactions on Components and Packaging Technologies\",\"volume\":\"33 1\",\"pages\":\"754-760\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TCAPT.2010.2060198\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Components and Packaging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TCAPT.2010.2060198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components and Packaging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCAPT.2010.2060198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UTCP: A Novel Polyimide-Based Ultra-Thin Chip Packaging Technology
Flexible materials, today, are being used already as base substrates for electronic assembly. A lot of mounted components could be integrated in flexible polyimide (PI) substrates. Very interesting advantages of integrating components into the flex are compactness and enhanced flexibility; not only the interconnection but also the components themselves can be mechanically flexible. This paper describes a PI-based embedding technology for integrating very thin silicon chips in between two spin-on PI layers, the ultra-thin chip package (UTCP). This paper discusses the different process steps in the UTCP production and also presents the interconnection test results realized with this technology.