扩散钎焊网在平行微通道中增强沸腾传热

Hailei Wang, R. Peterson
{"title":"扩散钎焊网在平行微通道中增强沸腾传热","authors":"Hailei Wang, R. Peterson","doi":"10.1109/TCAPT.2010.2070799","DOIUrl":null,"url":null,"abstract":"Flow boiling is an important process in energy conversion applications such as power generation and heating, ventilating, and air conditioning systems. Recently, it has drawn interest in the high heat flux electronics cooling community. Flow boiling enhancement, in addition, has the benefit of early onset of nucleate boiling, potentially lowering wall superheat, and increasing the heat transfer coefficient and critical heat flux (CHF). The objective of this paper was to investigate the use of fine metal wire mesh screens to enhance nucleate boiling in microchannels. Contact resistance between the wire mesh and channel heating surface was essentially eliminated by employing a diffusion brazing process to attach the screen to the wall. The parallel microchannels were 1000 μm in width and 510 μm in depth. A dielectric working fluid, HFE 7000, was investigated during this paper. Flow boiling results were compared for channels with and without wire mesh. According to the flow boiling curves obtained in this investigation for the bare and mesh channels, the amount of wall superheat was substantially reduced for the mesh channels at all four stream-wise locations. This indicated that nucleate boiling in the mesh channel was enhanced due to the increase of nucleation sites the mesh introduced. The mesh channels also displayed a higher flow boiling heat transfer coefficient. Both the nucleate boiling dominated regime and convective evaporation dominated regime were identified, with the overall trend of increasing the flow boiling heat transfer coefficient with respect to vapor quality until this quantity reached approximately 0.4. The CHF for the mesh channel was also significantly higher than that for the bare channel. The flow boiling enhancement was achieved with no apparent pressure drop penalty. The results presented here provide a practical means to implement this surface enhancement technique.","PeriodicalId":55013,"journal":{"name":"IEEE Transactions on Components and Packaging Technologies","volume":"33 1","pages":"784-793"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCAPT.2010.2070799","citationCount":"36","resultStr":"{\"title\":\"Enhanced Boiling Heat Transfer in Parallel Microchannels With Diffusion Brazed Wire Mesh\",\"authors\":\"Hailei Wang, R. Peterson\",\"doi\":\"10.1109/TCAPT.2010.2070799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flow boiling is an important process in energy conversion applications such as power generation and heating, ventilating, and air conditioning systems. Recently, it has drawn interest in the high heat flux electronics cooling community. Flow boiling enhancement, in addition, has the benefit of early onset of nucleate boiling, potentially lowering wall superheat, and increasing the heat transfer coefficient and critical heat flux (CHF). The objective of this paper was to investigate the use of fine metal wire mesh screens to enhance nucleate boiling in microchannels. Contact resistance between the wire mesh and channel heating surface was essentially eliminated by employing a diffusion brazing process to attach the screen to the wall. The parallel microchannels were 1000 μm in width and 510 μm in depth. A dielectric working fluid, HFE 7000, was investigated during this paper. Flow boiling results were compared for channels with and without wire mesh. According to the flow boiling curves obtained in this investigation for the bare and mesh channels, the amount of wall superheat was substantially reduced for the mesh channels at all four stream-wise locations. This indicated that nucleate boiling in the mesh channel was enhanced due to the increase of nucleation sites the mesh introduced. The mesh channels also displayed a higher flow boiling heat transfer coefficient. Both the nucleate boiling dominated regime and convective evaporation dominated regime were identified, with the overall trend of increasing the flow boiling heat transfer coefficient with respect to vapor quality until this quantity reached approximately 0.4. The CHF for the mesh channel was also significantly higher than that for the bare channel. The flow boiling enhancement was achieved with no apparent pressure drop penalty. The results presented here provide a practical means to implement this surface enhancement technique.\",\"PeriodicalId\":55013,\"journal\":{\"name\":\"IEEE Transactions on Components and Packaging Technologies\",\"volume\":\"33 1\",\"pages\":\"784-793\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TCAPT.2010.2070799\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Components and Packaging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TCAPT.2010.2070799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components and Packaging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCAPT.2010.2070799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

流动沸腾是发电、供热、通风、空调系统等能量转换应用中的一个重要过程。最近,它引起了高热流密度电子冷却界的兴趣。此外,流动沸腾的增强还具有早核沸腾的好处,可能降低壁面过热度,增加传热系数和临界热流密度(CHF)。本文的目的是研究使用细金属丝网筛网来增强微通道中的核沸腾。通过采用扩散钎焊工艺将筛网连接到墙壁上,基本上消除了丝网和通道加热表面之间的接触电阻。平行微通道宽度为1000 μm,深度为510 μm。本文研究了一种介电工质HFE 7000。比较了带和不带金属丝网通道的流动沸腾结果。根据本研究获得的裸露通道和网状通道的流动沸腾曲线,在所有四个流向位置,网状通道的壁面过热量都大大减少。这表明,网状通道内的成核沸腾是由于网状引入的成核位的增加而增强的。网状通道具有较高的流动沸腾换热系数。同时确定了成核沸腾和对流蒸发两种模式,流动沸腾换热系数相对于蒸汽质量总体呈增加趋势,直至达到0.4左右。网格通道的CHF也明显高于裸通道。在没有明显压降损失的情况下实现了流动沸腾的增强。本文的研究结果为实现这种表面增强技术提供了一种实用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Boiling Heat Transfer in Parallel Microchannels With Diffusion Brazed Wire Mesh
Flow boiling is an important process in energy conversion applications such as power generation and heating, ventilating, and air conditioning systems. Recently, it has drawn interest in the high heat flux electronics cooling community. Flow boiling enhancement, in addition, has the benefit of early onset of nucleate boiling, potentially lowering wall superheat, and increasing the heat transfer coefficient and critical heat flux (CHF). The objective of this paper was to investigate the use of fine metal wire mesh screens to enhance nucleate boiling in microchannels. Contact resistance between the wire mesh and channel heating surface was essentially eliminated by employing a diffusion brazing process to attach the screen to the wall. The parallel microchannels were 1000 μm in width and 510 μm in depth. A dielectric working fluid, HFE 7000, was investigated during this paper. Flow boiling results were compared for channels with and without wire mesh. According to the flow boiling curves obtained in this investigation for the bare and mesh channels, the amount of wall superheat was substantially reduced for the mesh channels at all four stream-wise locations. This indicated that nucleate boiling in the mesh channel was enhanced due to the increase of nucleation sites the mesh introduced. The mesh channels also displayed a higher flow boiling heat transfer coefficient. Both the nucleate boiling dominated regime and convective evaporation dominated regime were identified, with the overall trend of increasing the flow boiling heat transfer coefficient with respect to vapor quality until this quantity reached approximately 0.4. The CHF for the mesh channel was also significantly higher than that for the bare channel. The flow boiling enhancement was achieved with no apparent pressure drop penalty. The results presented here provide a practical means to implement this surface enhancement technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Venipuncture-related traumatic neuroma of the ulnar nerve on the dorsal of a hand: A case report. CFTR pharmacology. Editorial For a Brighter Future: Solid State Lighting Influence of Die Attach Layer on Thermal Performance of High Power Light Emitting Diodes Electrical Contact Resistance in Thin $({\leq}{\rm 0.5}~\mu{\rm m})$ Gold Plated Contacts: Effect of Gold Plating Thickness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1