基于形态学的降噪:比顿滤波器中的结构变化和阈值处理

IF 10.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Image Processing Pub Date : 2019-08-07 DOI:10.1109/TIP.2019.2932572
Graham Treece
{"title":"基于形态学的降噪:比顿滤波器中的结构变化和阈值处理","authors":"Graham Treece","doi":"10.1109/TIP.2019.2932572","DOIUrl":null,"url":null,"abstract":"<p><p>The bitonic filter was recently developed to embody the novel concept of signal bitonicity (one local extremum within a set range) to differentiate from noise, by use of data ranking and linear operators. For processing images, the spatial extent was locally constrained to a fixed circular mask. Since structure in natural images varies, a novel structurally varying bitonic filter is presented, which locally adapts the mask, without following patterns in the noise. This new filter includes novel robust structurally varying morphological operations, with efficient implementations, and a novel formulation of non-iterative directional Gaussian filtering. Data thresholds are also integrated with the morphological operations, increasing noise reduction for low noise, and enabling a multi-resolution framework for high noise levels. The structurally varying bitonic filter is presented without presuming prior knowledge of morphological filtering, and compared to high-performance linear noise-reduction filters, to set this novel concept in context. These are tested over a wide range of noise levels, on a fairly broad set of images. The new filter is a considerable improvement on the fixed-mask bitonic, outperforms anisotropic diffusion and image-guided filtering in all but extremely low noise, non-local means at all noise levels, but not the block-matching 3D filter, though results are promising for very high noise. The structurally varying bitonic tends to have less characteristic residual noise in regions of smooth signal, and very good preservation of signal edges, though with some loss of small scale detail when compared to the block-matching 3D filter. The efficient implementation means that processing time, though slower than the fixed-mask bitonic filter, remains competitive.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphology-based Noise Reduction: Structural Variation and Thresholding in the Bitonic Filter.\",\"authors\":\"Graham Treece\",\"doi\":\"10.1109/TIP.2019.2932572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The bitonic filter was recently developed to embody the novel concept of signal bitonicity (one local extremum within a set range) to differentiate from noise, by use of data ranking and linear operators. For processing images, the spatial extent was locally constrained to a fixed circular mask. Since structure in natural images varies, a novel structurally varying bitonic filter is presented, which locally adapts the mask, without following patterns in the noise. This new filter includes novel robust structurally varying morphological operations, with efficient implementations, and a novel formulation of non-iterative directional Gaussian filtering. Data thresholds are also integrated with the morphological operations, increasing noise reduction for low noise, and enabling a multi-resolution framework for high noise levels. The structurally varying bitonic filter is presented without presuming prior knowledge of morphological filtering, and compared to high-performance linear noise-reduction filters, to set this novel concept in context. These are tested over a wide range of noise levels, on a fairly broad set of images. The new filter is a considerable improvement on the fixed-mask bitonic, outperforms anisotropic diffusion and image-guided filtering in all but extremely low noise, non-local means at all noise levels, but not the block-matching 3D filter, though results are promising for very high noise. The structurally varying bitonic tends to have less characteristic residual noise in regions of smooth signal, and very good preservation of signal edges, though with some loss of small scale detail when compared to the block-matching 3D filter. The efficient implementation means that processing time, though slower than the fixed-mask bitonic filter, remains competitive.</p>\",\"PeriodicalId\":13217,\"journal\":{\"name\":\"IEEE Transactions on Image Processing\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2019-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TIP.2019.2932572\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2932572","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近开发的位子滤波器体现了信号位子性(在设定范围内的一个局部极值)的新概念,通过使用数据排序和线性算子来区分噪声。在处理图像时,空间范围被局部限制为一个固定的圆形掩膜。由于自然图像中的结构各不相同,因此提出了一种新颖的结构变化位子滤波器,它能局部调整掩码,而不遵循噪声中的模式。这种新的滤波器包括新颖稳健的结构变化形态学运算和高效的实现方法,以及非迭代定向高斯滤波的新表述。数据阈值也与形态学运算结合在一起,从而提高了对低噪声的降噪能力,并实现了对高噪声水平的多分辨率框架。在介绍结构变化位子滤波器时,我们并没有预先假定对形态学滤波的了解,而是将其与高性能线性降噪滤波器进行了比较,以确定这一新颖概念的背景。我们在相当广泛的图像集上,对各种噪声水平进行了测试。新滤波器在固定掩膜位子滤波器的基础上有了相当大的改进,在除极低噪声外的所有情况下都优于各向异性扩散和图像引导滤波器,在所有噪声水平下都优于非局部滤波器,但在块匹配三维滤波器上却不尽然,尽管在极高噪声下的结果很有希望。与块匹配三维滤波器相比,结构变化比特子在信号平滑的区域往往具有较少的特征残余噪声,并能很好地保留信号边缘,但会损失一些小尺度细节。高效的实现意味着处理时间虽然比固定掩码位子滤波器慢,但仍然具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphology-based Noise Reduction: Structural Variation and Thresholding in the Bitonic Filter.

The bitonic filter was recently developed to embody the novel concept of signal bitonicity (one local extremum within a set range) to differentiate from noise, by use of data ranking and linear operators. For processing images, the spatial extent was locally constrained to a fixed circular mask. Since structure in natural images varies, a novel structurally varying bitonic filter is presented, which locally adapts the mask, without following patterns in the noise. This new filter includes novel robust structurally varying morphological operations, with efficient implementations, and a novel formulation of non-iterative directional Gaussian filtering. Data thresholds are also integrated with the morphological operations, increasing noise reduction for low noise, and enabling a multi-resolution framework for high noise levels. The structurally varying bitonic filter is presented without presuming prior knowledge of morphological filtering, and compared to high-performance linear noise-reduction filters, to set this novel concept in context. These are tested over a wide range of noise levels, on a fairly broad set of images. The new filter is a considerable improvement on the fixed-mask bitonic, outperforms anisotropic diffusion and image-guided filtering in all but extremely low noise, non-local means at all noise levels, but not the block-matching 3D filter, though results are promising for very high noise. The structurally varying bitonic tends to have less characteristic residual noise in regions of smooth signal, and very good preservation of signal edges, though with some loss of small scale detail when compared to the block-matching 3D filter. The efficient implementation means that processing time, though slower than the fixed-mask bitonic filter, remains competitive.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Image Processing
IEEE Transactions on Image Processing 工程技术-工程:电子与电气
CiteScore
20.90
自引率
6.60%
发文量
774
审稿时长
7.6 months
期刊介绍: The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.
期刊最新文献
GeodesicPSIM: Predicting the Quality of Static Mesh with Texture Map via Geodesic Patch Similarity A Versatile Framework for Unsupervised Domain Adaptation based on Instance Weighting Revisiting Domain-Adaptive Semantic Segmentation via Knowledge Distillation RegSeg: An End-to-End Network for Multimodal RGB-Thermal Registration and Semantic Segmentation Salient Object Detection in RGB-D Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1