Lei Zhang, Ji Liu, Bob Zhanga, David Zhangb, Ce Zhu
{"title":"基于深度级联模型的人脸识别:当深度层学习遇到小数据时。","authors":"Lei Zhang, Ji Liu, Bob Zhanga, David Zhangb, Ce Zhu","doi":"10.1109/TIP.2019.2938307","DOIUrl":null,"url":null,"abstract":"<p><p>Sparse representation based classification (SRC), nuclear-norm matrix regression (NMR), and deep learning (DL) have achieved a great success in face recognition (FR). However, there still exist some intrinsic limitations among them. SRC and NMR based coding methods belong to one-step model, such that the latent discriminative information of the coding error vector cannot be fully exploited. DL, as a multi-step model, can learn powerful representation, but relies on large-scale data and computation resources for numerous parameters training with complicated back-propagation. Straightforward training of deep neural networks from scratch on small-scale data is almost infeasible. Therefore, in order to develop efficient algorithms that are specifically adapted for small-scale data, we propose to derive the deep models of SRC and NMR. Specifically, in this paper, we propose an end-to-end deep cascade model (DCM) based on SRC and NMR with hierarchical learning, nonlinear transformation and multi-layer structure for corrupted face recognition. The contributions include four aspects. First, an end-to-end deep cascade model for small-scale data without back-propagation is proposed. Second, a multi-level pyramid structure is integrated for local feature representation. Third, for introducing nonlinear transformation in layer-wise learning, softmax vector coding of the errors with class discrimination is proposed. Fourth, the existing representation methods can be easily integrated into our DCM framework. Experiments on a number of small-scale benchmark FR datasets demonstrate the superiority of the proposed model over state-of-the-art counterparts. Additionally, a perspective that deep-layered learning does not have to be convolutional neural network with back-propagation optimization is consolidated. The demo code is available in https://github.com/liuji93/DCM.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Cascade Model based Face Recognition: When Deep-layered Learning Meets Small Data.\",\"authors\":\"Lei Zhang, Ji Liu, Bob Zhanga, David Zhangb, Ce Zhu\",\"doi\":\"10.1109/TIP.2019.2938307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sparse representation based classification (SRC), nuclear-norm matrix regression (NMR), and deep learning (DL) have achieved a great success in face recognition (FR). However, there still exist some intrinsic limitations among them. SRC and NMR based coding methods belong to one-step model, such that the latent discriminative information of the coding error vector cannot be fully exploited. DL, as a multi-step model, can learn powerful representation, but relies on large-scale data and computation resources for numerous parameters training with complicated back-propagation. Straightforward training of deep neural networks from scratch on small-scale data is almost infeasible. Therefore, in order to develop efficient algorithms that are specifically adapted for small-scale data, we propose to derive the deep models of SRC and NMR. Specifically, in this paper, we propose an end-to-end deep cascade model (DCM) based on SRC and NMR with hierarchical learning, nonlinear transformation and multi-layer structure for corrupted face recognition. The contributions include four aspects. First, an end-to-end deep cascade model for small-scale data without back-propagation is proposed. Second, a multi-level pyramid structure is integrated for local feature representation. Third, for introducing nonlinear transformation in layer-wise learning, softmax vector coding of the errors with class discrimination is proposed. Fourth, the existing representation methods can be easily integrated into our DCM framework. Experiments on a number of small-scale benchmark FR datasets demonstrate the superiority of the proposed model over state-of-the-art counterparts. Additionally, a perspective that deep-layered learning does not have to be convolutional neural network with back-propagation optimization is consolidated. The demo code is available in https://github.com/liuji93/DCM.</p>\",\"PeriodicalId\":13217,\"journal\":{\"name\":\"IEEE Transactions on Image Processing\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2019-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TIP.2019.2938307\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2938307","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep Cascade Model based Face Recognition: When Deep-layered Learning Meets Small Data.
Sparse representation based classification (SRC), nuclear-norm matrix regression (NMR), and deep learning (DL) have achieved a great success in face recognition (FR). However, there still exist some intrinsic limitations among them. SRC and NMR based coding methods belong to one-step model, such that the latent discriminative information of the coding error vector cannot be fully exploited. DL, as a multi-step model, can learn powerful representation, but relies on large-scale data and computation resources for numerous parameters training with complicated back-propagation. Straightforward training of deep neural networks from scratch on small-scale data is almost infeasible. Therefore, in order to develop efficient algorithms that are specifically adapted for small-scale data, we propose to derive the deep models of SRC and NMR. Specifically, in this paper, we propose an end-to-end deep cascade model (DCM) based on SRC and NMR with hierarchical learning, nonlinear transformation and multi-layer structure for corrupted face recognition. The contributions include four aspects. First, an end-to-end deep cascade model for small-scale data without back-propagation is proposed. Second, a multi-level pyramid structure is integrated for local feature representation. Third, for introducing nonlinear transformation in layer-wise learning, softmax vector coding of the errors with class discrimination is proposed. Fourth, the existing representation methods can be easily integrated into our DCM framework. Experiments on a number of small-scale benchmark FR datasets demonstrate the superiority of the proposed model over state-of-the-art counterparts. Additionally, a perspective that deep-layered learning does not have to be convolutional neural network with back-propagation optimization is consolidated. The demo code is available in https://github.com/liuji93/DCM.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.