Guangcheng Wang, Zhongyuan Wang, Ke Gu, Leida Li, Zhifang Xia, Lifang Wu
{"title":"离散小波变换域中 DIBR 合成图像的盲质量度量。","authors":"Guangcheng Wang, Zhongyuan Wang, Ke Gu, Leida Li, Zhifang Xia, Lifang Wu","doi":"10.1109/TIP.2019.2945675","DOIUrl":null,"url":null,"abstract":"<p><p>Free viewpoint video (FVV) has received considerable attention owing to its widespread applications in several areas such as immersive entertainment, remote surveillance and distanced education. Since FVV images are synthesized via a depth image-based rendering (DIBR) procedure in the \"blind\" environment (without reference images), a real-time and reliable blind quality assessment metric is urgently required. However, the existing image quality assessment metrics are insensitive to the geometric distortions engendered by DIBR. In this research, a novel blind method of DIBR-synthesized images is proposed based on measuring geometric distortion, global sharpness and image complexity. First, a DIBR-synthesized image is decomposed into wavelet subbands by using discrete wavelet transform. Then, the Canny operator is employed to detect the edges of the binarized low-frequency subband and high-frequency subbands. The edge similarities between the binarized low-frequency subband and high-frequency subbands are further computed to quantify geometric distortions in DIBR-synthesized images. Second, the log-energies of wavelet subbands are calculated to evaluate global sharpness in DIBR-synthesized images. Third, a hybrid filter combining the autoregressive and bilateral filters is adopted to compute image complexity. Finally, the overall quality score is derived to normalize geometric distortion and global sharpness by the image complexity. Experiments show that our proposed quality method is superior to the competing reference-free state-of-the-art DIBR-synthesized image quality models.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind Quality Metric of DIBR-Synthesized Images in the Discrete Wavelet Transform Domain.\",\"authors\":\"Guangcheng Wang, Zhongyuan Wang, Ke Gu, Leida Li, Zhifang Xia, Lifang Wu\",\"doi\":\"10.1109/TIP.2019.2945675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Free viewpoint video (FVV) has received considerable attention owing to its widespread applications in several areas such as immersive entertainment, remote surveillance and distanced education. Since FVV images are synthesized via a depth image-based rendering (DIBR) procedure in the \\\"blind\\\" environment (without reference images), a real-time and reliable blind quality assessment metric is urgently required. However, the existing image quality assessment metrics are insensitive to the geometric distortions engendered by DIBR. In this research, a novel blind method of DIBR-synthesized images is proposed based on measuring geometric distortion, global sharpness and image complexity. First, a DIBR-synthesized image is decomposed into wavelet subbands by using discrete wavelet transform. Then, the Canny operator is employed to detect the edges of the binarized low-frequency subband and high-frequency subbands. The edge similarities between the binarized low-frequency subband and high-frequency subbands are further computed to quantify geometric distortions in DIBR-synthesized images. Second, the log-energies of wavelet subbands are calculated to evaluate global sharpness in DIBR-synthesized images. Third, a hybrid filter combining the autoregressive and bilateral filters is adopted to compute image complexity. Finally, the overall quality score is derived to normalize geometric distortion and global sharpness by the image complexity. Experiments show that our proposed quality method is superior to the competing reference-free state-of-the-art DIBR-synthesized image quality models.</p>\",\"PeriodicalId\":13217,\"journal\":{\"name\":\"IEEE Transactions on Image Processing\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2019-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TIP.2019.2945675\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2945675","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Blind Quality Metric of DIBR-Synthesized Images in the Discrete Wavelet Transform Domain.
Free viewpoint video (FVV) has received considerable attention owing to its widespread applications in several areas such as immersive entertainment, remote surveillance and distanced education. Since FVV images are synthesized via a depth image-based rendering (DIBR) procedure in the "blind" environment (without reference images), a real-time and reliable blind quality assessment metric is urgently required. However, the existing image quality assessment metrics are insensitive to the geometric distortions engendered by DIBR. In this research, a novel blind method of DIBR-synthesized images is proposed based on measuring geometric distortion, global sharpness and image complexity. First, a DIBR-synthesized image is decomposed into wavelet subbands by using discrete wavelet transform. Then, the Canny operator is employed to detect the edges of the binarized low-frequency subband and high-frequency subbands. The edge similarities between the binarized low-frequency subband and high-frequency subbands are further computed to quantify geometric distortions in DIBR-synthesized images. Second, the log-energies of wavelet subbands are calculated to evaluate global sharpness in DIBR-synthesized images. Third, a hybrid filter combining the autoregressive and bilateral filters is adopted to compute image complexity. Finally, the overall quality score is derived to normalize geometric distortion and global sharpness by the image complexity. Experiments show that our proposed quality method is superior to the competing reference-free state-of-the-art DIBR-synthesized image quality models.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.