基于故障定位和部分重构的热备拓扑自修复带前瞻加法器

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of circuits and systems Pub Date : 2022-03-23 DOI:10.1109/OJCAS.2022.3161873
Muhammad Ali Akbar;Bo Wang;Amine Bermak
{"title":"基于故障定位和部分重构的热备拓扑自修复带前瞻加法器","authors":"Muhammad Ali Akbar;Bo Wang;Amine Bermak","doi":"10.1109/OJCAS.2022.3161873","DOIUrl":null,"url":null,"abstract":"In this paper, a self-checking and -repairing carry-lookahead adder (CLA) is proposed with distributed fault detection ability. The presented design with self-checking and fault localization ability requires an area overhead of 69.6% as compared to the conventional CLA. It can handle multiple faults simultaneously without affecting the delay of conventional CLA, with the condition that each module has a single fault at a time. The repairing operation utilizes the hot-standby approach with partial reconfiguration in which the faulty module would be replaced by an accurately functioning module at run-time. The proposed self-repairing adder with high fault coverage requires 161.5% area overhead as compared to conventional CLA design which is 35.3% less as compared to the state-of-the-art partial self-repairing CLA. Moreover, the delay of the proposed 64-bit self-repairing CLA is 40.7% more efficient as compared to conventional ripple carry adder.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9740253","citationCount":"2","resultStr":"{\"title\":\"Self-Repairing Carry-Lookahead Adder With Hot-Standby Topology Using Fault-Localization and Partial Reconfiguration\",\"authors\":\"Muhammad Ali Akbar;Bo Wang;Amine Bermak\",\"doi\":\"10.1109/OJCAS.2022.3161873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a self-checking and -repairing carry-lookahead adder (CLA) is proposed with distributed fault detection ability. The presented design with self-checking and fault localization ability requires an area overhead of 69.6% as compared to the conventional CLA. It can handle multiple faults simultaneously without affecting the delay of conventional CLA, with the condition that each module has a single fault at a time. The repairing operation utilizes the hot-standby approach with partial reconfiguration in which the faulty module would be replaced by an accurately functioning module at run-time. The proposed self-repairing adder with high fault coverage requires 161.5% area overhead as compared to conventional CLA design which is 35.3% less as compared to the state-of-the-art partial self-repairing CLA. Moreover, the delay of the proposed 64-bit self-repairing CLA is 40.7% more efficient as compared to conventional ripple carry adder.\",\"PeriodicalId\":93442,\"journal\":{\"name\":\"IEEE open journal of circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9740253\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9740253/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9740253/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种具有分布式故障检测能力的自检修复超前加法器(CLA)。与传统的CLA相比,具有自检和故障定位能力的设计需要69.6%的面积开销。它可以同时处理多个故障,而不影响传统CLA的延迟,条件是每个模块一次只有一个故障。修复操作采用热备用方法,部分重新配置,故障模块将在运行时被准确运行的模块所取代。与传统的CLA设计相比,所提出的具有高故障覆盖率的自修复加法器需要161.5%的面积开销,与最先进的部分自修复CLA相比,减少了35.3%。此外,与传统纹波进位加法器相比,所提出的64位自修复CLA的延迟效率提高了40.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-Repairing Carry-Lookahead Adder With Hot-Standby Topology Using Fault-Localization and Partial Reconfiguration
In this paper, a self-checking and -repairing carry-lookahead adder (CLA) is proposed with distributed fault detection ability. The presented design with self-checking and fault localization ability requires an area overhead of 69.6% as compared to the conventional CLA. It can handle multiple faults simultaneously without affecting the delay of conventional CLA, with the condition that each module has a single fault at a time. The repairing operation utilizes the hot-standby approach with partial reconfiguration in which the faulty module would be replaced by an accurately functioning module at run-time. The proposed self-repairing adder with high fault coverage requires 161.5% area overhead as compared to conventional CLA design which is 35.3% less as compared to the state-of-the-art partial self-repairing CLA. Moreover, the delay of the proposed 64-bit self-repairing CLA is 40.7% more efficient as compared to conventional ripple carry adder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Double MAC on a Cell: A 22-nm 8T-SRAM-Based Analog In-Memory Accelerator for Binary/Ternary Neural Networks Featuring Split Wordline A Companding Technique to Reduce Peak-to-Average Ratio in Discrete Multitone Wireline Receivers Low-Power On-Chip Energy Harvesting: From Interface Circuits Perspective A 10 GHz Dual-Loop PLL With Active Cycle-Jitter Correction Achieving 12dB Spur and 29% Jitter Reduction A 45Gb/s Analog Multi-Tone Receiver Utilizing a 6-Tap MIMO-FFE in 22nm FDSOI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1