用于医疗环境中简单裸模测量的双面无衬垫结构CMOS-CNT生物传感器阵列

IF 3.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Circuits and Systems Pub Date : 2015-12-29 DOI:10.1109/TBCAS.2015.2500911
Jin-Hong Ahn, Sang-Hoon Hong, Youngjune Park
{"title":"用于医疗环境中简单裸模测量的双面无衬垫结构CMOS-CNT生物传感器阵列","authors":"Jin-Hong Ahn, Sang-Hoon Hong, Youngjune Park","doi":"10.1109/TBCAS.2015.2500911","DOIUrl":null,"url":null,"abstract":"This paper presents a double-side CMOS-carbon nanotube (CNT) sensor array for simple bare-die measurements in a medical environment based on a 0.35 μm standard CMOS process. This scheme allows robust measurements due to its inherent back-side rectifying diodes with a high latch-up resistance. In particular, instead of using pads, only two contact metal structures: a wide ring structure around the sensor area on the front side and a plate structure at the backside are used for both power and single I/O line. The back-side rectification is made possible by creating VDD and VSS through the back-side and front-side, respectively. The single I/O line is conditioned such that it doubles as either the power source or the ground, depending on whether the chip is face down or face up. A modified universal asynchronous receiver/transmitter (UART) serial communication scheme with pulse based I/O signal transmission is developed to reduce the power degradation during the signaling intervals. In addition, communication errors and I/O power dissipation for the receiver path are minimized by using level sensitive switch control and double sampling difference amplifier. In order to implement these special functions, a controller chip with a special I/O protocol is designed. Using this controller chip, issuing commands and receiving data can both be performed on a single line and the results are flexibly measured through either the backside or the front side of the chip contacts. As a result, a stable operation of under 150 mW maximum power at 2 MHz data rate can be achieved. The double-side chips with 32 × 32 and 64 × 64 sensor arrays occupy areas of 1.9×2.3 mm2 and 3.7×3.9 mm2, respectively.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2015-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2015.2500911","citationCount":"4","resultStr":"{\"title\":\"A Double-Side CMOS-CNT Biosensor Array With Padless Structure for Simple Bare-Die Measurements in a Medical Environment\",\"authors\":\"Jin-Hong Ahn, Sang-Hoon Hong, Youngjune Park\",\"doi\":\"10.1109/TBCAS.2015.2500911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a double-side CMOS-carbon nanotube (CNT) sensor array for simple bare-die measurements in a medical environment based on a 0.35 μm standard CMOS process. This scheme allows robust measurements due to its inherent back-side rectifying diodes with a high latch-up resistance. In particular, instead of using pads, only two contact metal structures: a wide ring structure around the sensor area on the front side and a plate structure at the backside are used for both power and single I/O line. The back-side rectification is made possible by creating VDD and VSS through the back-side and front-side, respectively. The single I/O line is conditioned such that it doubles as either the power source or the ground, depending on whether the chip is face down or face up. A modified universal asynchronous receiver/transmitter (UART) serial communication scheme with pulse based I/O signal transmission is developed to reduce the power degradation during the signaling intervals. In addition, communication errors and I/O power dissipation for the receiver path are minimized by using level sensitive switch control and double sampling difference amplifier. In order to implement these special functions, a controller chip with a special I/O protocol is designed. Using this controller chip, issuing commands and receiving data can both be performed on a single line and the results are flexibly measured through either the backside or the front side of the chip contacts. As a result, a stable operation of under 150 mW maximum power at 2 MHz data rate can be achieved. The double-side chips with 32 × 32 and 64 × 64 sensor arrays occupy areas of 1.9×2.3 mm2 and 3.7×3.9 mm2, respectively.\",\"PeriodicalId\":13151,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2015-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TBCAS.2015.2500911\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2015.2500911\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBCAS.2015.2500911","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于0.35 μm标准CMOS工艺的双面CMOS-碳纳米管(CNT)传感器阵列,用于医疗环境中的简单裸片测量。由于其固有的具有高锁存电阻的背面整流二极管,该方案允许稳健的测量。特别的是,电源和单I/O线只使用两种接触金属结构,而不是使用焊盘:前面传感器区域周围的宽环结构和后面的板结构。通过背面和正面分别创建VDD和VSS,可以实现背面整流。单I/O线是有条件的,根据芯片是面朝下还是面朝上,它可以兼作电源或地。提出了一种改进的通用异步收发器(UART)串行通信方案,该方案采用基于脉冲的I/O信号传输,以减少信号间隔期间的功率衰减。此外,采用电平敏感开关控制和双采样差分放大器,最大限度地降低了接收路径的通信误差和I/O功耗。为了实现这些特殊的功能,设计了一个具有特殊I/O协议的控制器芯片。使用该控制器芯片,发出命令和接收数据都可以在单线上完成,并且可以通过芯片触点的背面或正面灵活地测量结果。因此,可以在2 MHz数据速率下实现150 mW最大功率下的稳定运行。采用32 × 32和64 × 64传感器阵列的双面芯片面积分别为1.9×2.3 mm2和3.7×3.9 mm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Double-Side CMOS-CNT Biosensor Array With Padless Structure for Simple Bare-Die Measurements in a Medical Environment
This paper presents a double-side CMOS-carbon nanotube (CNT) sensor array for simple bare-die measurements in a medical environment based on a 0.35 μm standard CMOS process. This scheme allows robust measurements due to its inherent back-side rectifying diodes with a high latch-up resistance. In particular, instead of using pads, only two contact metal structures: a wide ring structure around the sensor area on the front side and a plate structure at the backside are used for both power and single I/O line. The back-side rectification is made possible by creating VDD and VSS through the back-side and front-side, respectively. The single I/O line is conditioned such that it doubles as either the power source or the ground, depending on whether the chip is face down or face up. A modified universal asynchronous receiver/transmitter (UART) serial communication scheme with pulse based I/O signal transmission is developed to reduce the power degradation during the signaling intervals. In addition, communication errors and I/O power dissipation for the receiver path are minimized by using level sensitive switch control and double sampling difference amplifier. In order to implement these special functions, a controller chip with a special I/O protocol is designed. Using this controller chip, issuing commands and receiving data can both be performed on a single line and the results are flexibly measured through either the backside or the front side of the chip contacts. As a result, a stable operation of under 150 mW maximum power at 2 MHz data rate can be achieved. The double-side chips with 32 × 32 and 64 × 64 sensor arrays occupy areas of 1.9×2.3 mm2 and 3.7×3.9 mm2, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Biomedical Circuits and Systems
IEEE Transactions on Biomedical Circuits and Systems 工程技术-工程:电子与电气
CiteScore
10.00
自引率
13.70%
发文量
174
审稿时长
3 months
期刊介绍: The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.
期刊最新文献
A 1024-Channel Simultaneous Electrophysiological and Electrochemical Neural Recording System with In-Pixel Digitization and Crosstalk Compensation A 13.56-MHz 93.5%-Efficiency Optimal On/Off Timing Tracking Active Rectifier with Digital Feedback-Based Adaptive Delay Control An Ultra-Low Power Wearable BMI System with Continual Learning Capabilities Closed-Loop Implantable Neurostimulators for Individualized Treatment of Intractable Epilepsy: A Review of Recent Developments, Ongoing Challenges, and Future Opportunities Real-Time sEMG Processing with Spiking Neural Networks on a Low-Power 5K-LUT FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1