大规模学习的自适应强力球随机共轭梯度

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Big Data Pub Date : 2023-08-01 DOI:10.1109/TBDATA.2023.3300546
Zhuang Yang
{"title":"大规模学习的自适应强力球随机共轭梯度","authors":"Zhuang Yang","doi":"10.1109/TBDATA.2023.3300546","DOIUrl":null,"url":null,"abstract":"The extreme success of stochastic optimization (SO) in large-scale machine learning problems, information retrieval, bioinformatics, etc., has been widely reported, especially in recent years. As an effective tactic, conjugate gradient (CG) has been gaining its popularity in accelerating SO algorithms. This paper develops a novel type of stochastic conjugate gradient descent (SCG) algorithms from the perspective of the Powerball strategy and the hypergradient descent (HD) technique. The crucial idea behind the resulting methods is inspired by pursuing the equilibrium of ordinary differential equations (ODEs). We elucidate the effect of the Powerball strategy in SCG algorithms. The introduction of HD, on the other side, makes the resulting methods work with an online learning rate. Meanwhile, we provide a comprehension of the theoretical results for the resulting algorithms under non-convex assumptions. As a byproduct, we bridge the gap between the learning rate and powered stochastic optimization (PSO) algorithms, which is still an open problem. Resorting to numerical experiments on numerous benchmark datasets, we test the parameter sensitivity of the proposed methods and demonstrate the superior performance of our new algorithms over state-of-the-art algorithms.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"9 6","pages":"1598-1606"},"PeriodicalIF":7.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Powerball Stochastic Conjugate Gradient for Large-Scale Learning\",\"authors\":\"Zhuang Yang\",\"doi\":\"10.1109/TBDATA.2023.3300546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extreme success of stochastic optimization (SO) in large-scale machine learning problems, information retrieval, bioinformatics, etc., has been widely reported, especially in recent years. As an effective tactic, conjugate gradient (CG) has been gaining its popularity in accelerating SO algorithms. This paper develops a novel type of stochastic conjugate gradient descent (SCG) algorithms from the perspective of the Powerball strategy and the hypergradient descent (HD) technique. The crucial idea behind the resulting methods is inspired by pursuing the equilibrium of ordinary differential equations (ODEs). We elucidate the effect of the Powerball strategy in SCG algorithms. The introduction of HD, on the other side, makes the resulting methods work with an online learning rate. Meanwhile, we provide a comprehension of the theoretical results for the resulting algorithms under non-convex assumptions. As a byproduct, we bridge the gap between the learning rate and powered stochastic optimization (PSO) algorithms, which is still an open problem. Resorting to numerical experiments on numerous benchmark datasets, we test the parameter sensitivity of the proposed methods and demonstrate the superior performance of our new algorithms over state-of-the-art algorithms.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"9 6\",\"pages\":\"1598-1606\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10198728/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10198728/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

随机优化(SO)在大规模机器学习问题、信息检索、生物信息学等领域的巨大成功已经被广泛报道,尤其是近年来。共轭梯度(CG)作为一种有效的策略,在加速SO算法中得到了广泛的应用。从强力球策略和超梯度下降技术的角度出发,提出了一种新的随机共轭梯度下降(SCG)算法。结果方法背后的关键思想是由追求常微分方程(ode)的平衡所启发的。我们阐明了强力球策略在SCG算法中的作用。另一方面,HD的引入使最终的方法与在线学习率一起工作。同时,我们提供了在非凸假设下所得算法的理论结果的理解。作为一个副产品,我们弥合了学习率和动力随机优化(PSO)算法之间的差距,这仍然是一个悬而未决的问题。通过在众多基准数据集上进行数值实验,我们测试了所提出方法的参数敏感性,并证明了我们的新算法比最先进的算法具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Powerball Stochastic Conjugate Gradient for Large-Scale Learning
The extreme success of stochastic optimization (SO) in large-scale machine learning problems, information retrieval, bioinformatics, etc., has been widely reported, especially in recent years. As an effective tactic, conjugate gradient (CG) has been gaining its popularity in accelerating SO algorithms. This paper develops a novel type of stochastic conjugate gradient descent (SCG) algorithms from the perspective of the Powerball strategy and the hypergradient descent (HD) technique. The crucial idea behind the resulting methods is inspired by pursuing the equilibrium of ordinary differential equations (ODEs). We elucidate the effect of the Powerball strategy in SCG algorithms. The introduction of HD, on the other side, makes the resulting methods work with an online learning rate. Meanwhile, we provide a comprehension of the theoretical results for the resulting algorithms under non-convex assumptions. As a byproduct, we bridge the gap between the learning rate and powered stochastic optimization (PSO) algorithms, which is still an open problem. Resorting to numerical experiments on numerous benchmark datasets, we test the parameter sensitivity of the proposed methods and demonstrate the superior performance of our new algorithms over state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
期刊最新文献
Guest Editorial TBD Special Issue on Graph Machine Learning for Recommender Systems Reliable Data Augmented Contrastive Learning for Sequential Recommendation Denoised Graph Collaborative Filtering via Neighborhood Similarity and Dynamic Thresholding Higher-Order Smoothness Enhanced Graph Collaborative Filtering AKGNN: Attribute Knowledge Graph Neural Networks Recommendation for Corporate Volunteer Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1