PredLife:预测细粒度的未来活动模式

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Big Data Pub Date : 2023-08-30 DOI:10.1109/TBDATA.2023.3310241
Wenjing Li;Xiaodan Shi;Dou Huang;Xudong Shen;Jinyu Chen;Hill Hiroki Kobayashi;Haoran Zhang;Xuan Song;Ryosuke Shibasaki
{"title":"PredLife:预测细粒度的未来活动模式","authors":"Wenjing Li;Xiaodan Shi;Dou Huang;Xudong Shen;Jinyu Chen;Hill Hiroki Kobayashi;Haoran Zhang;Xuan Song;Ryosuke Shibasaki","doi":"10.1109/TBDATA.2023.3310241","DOIUrl":null,"url":null,"abstract":"Activity pattern prediction is a critical part of urban computing, urban planning, intelligent transportation, and so on. Based on a dataset with more than 10 million GPS trajectory records collected by mobile sensors, this research proposed a CNN-BiLSTM-VAE-ATT-based encoder-decoder model for fine-grained individual activity sequence prediction. The model combines the long-term and short-term dependencies crosswise and also considers randomness, diversity, and uncertainty of individual activity patterns. The proposed results show higher accuracy compared to the ten baselines. The model can generate high diversity results while approximating the original activity patterns distribution. Moreover, the model also has interpretability in revealing the time dependency importance of the activity pattern prediction.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"9 6","pages":"1658-1669"},"PeriodicalIF":7.5000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PredLife: Predicting Fine-Grained Future Activity Patterns\",\"authors\":\"Wenjing Li;Xiaodan Shi;Dou Huang;Xudong Shen;Jinyu Chen;Hill Hiroki Kobayashi;Haoran Zhang;Xuan Song;Ryosuke Shibasaki\",\"doi\":\"10.1109/TBDATA.2023.3310241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Activity pattern prediction is a critical part of urban computing, urban planning, intelligent transportation, and so on. Based on a dataset with more than 10 million GPS trajectory records collected by mobile sensors, this research proposed a CNN-BiLSTM-VAE-ATT-based encoder-decoder model for fine-grained individual activity sequence prediction. The model combines the long-term and short-term dependencies crosswise and also considers randomness, diversity, and uncertainty of individual activity patterns. The proposed results show higher accuracy compared to the ten baselines. The model can generate high diversity results while approximating the original activity patterns distribution. Moreover, the model also has interpretability in revealing the time dependency importance of the activity pattern prediction.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"9 6\",\"pages\":\"1658-1669\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10235301/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10235301/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

活动模式预测是城市计算、城市规划、智能交通等领域的重要组成部分。基于移动传感器收集的1000多万条GPS轨迹数据集,提出了一种基于cnn - bilstm - vae - at的编码器-解码器模型,用于细粒度个体活动序列预测。该模型横向结合了长期和短期依赖关系,并考虑了个体活动模式的随机性、多样性和不确定性。与10个基线相比,所提出的结果具有更高的精度。该模型在接近原始活动模式分布的情况下,可以得到较高的多样性结果。此外,该模型在揭示活动模式预测的时间依赖性重要性方面也具有可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PredLife: Predicting Fine-Grained Future Activity Patterns
Activity pattern prediction is a critical part of urban computing, urban planning, intelligent transportation, and so on. Based on a dataset with more than 10 million GPS trajectory records collected by mobile sensors, this research proposed a CNN-BiLSTM-VAE-ATT-based encoder-decoder model for fine-grained individual activity sequence prediction. The model combines the long-term and short-term dependencies crosswise and also considers randomness, diversity, and uncertainty of individual activity patterns. The proposed results show higher accuracy compared to the ten baselines. The model can generate high diversity results while approximating the original activity patterns distribution. Moreover, the model also has interpretability in revealing the time dependency importance of the activity pattern prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
期刊最新文献
Guest Editorial TBD Special Issue on Graph Machine Learning for Recommender Systems Reliable Data Augmented Contrastive Learning for Sequential Recommendation Denoised Graph Collaborative Filtering via Neighborhood Similarity and Dynamic Thresholding Higher-Order Smoothness Enhanced Graph Collaborative Filtering AKGNN: Attribute Knowledge Graph Neural Networks Recommendation for Corporate Volunteer Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1