面向方面级情感分类的文档级数据增强迁移学习

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Big Data Pub Date : 2023-08-30 DOI:10.1109/TBDATA.2023.3310267
Xiaosai Huang;Jing Li;Jia Wu;Jun Chang;Donghua Liu
{"title":"面向方面级情感分类的文档级数据增强迁移学习","authors":"Xiaosai Huang;Jing Li;Jia Wu;Jun Chang;Donghua Liu","doi":"10.1109/TBDATA.2023.3310267","DOIUrl":null,"url":null,"abstract":"Aspect-level sentiment classification (ASC) seeks to reveal the emotional tendency of a designated aspect of a text. Some researchers have recently tried to exploit large amounts of document-level sentiment classification (DSC) data available to help improve the performance of ASC models through transfer learning. However, these studies often ignore the difference in sentiment distribution between document-level and aspect-level data without preprocessing the document-level knowledge. Our study provides a transfer learning with document-level data augmentation (TL-DDA) framework to transfer more accurate document-level knowledge to the ASC model by means of \n<italic>document-level data augmentation</i>\n and \n<italic>attention fusion</i>\n. First, we use \n<italic>document data selection</i>\n and \n<italic>text concatenation</i>\n to produce document-level data with various sentiment distributions. The augmented document data is then utilized for pre-training a well-designed DSC model. Finally, after \n<italic>attention adjustment</i>\n, we \n<italic>fuse the word attention</i>\n obtained from this DSC model into the ASC model. Results of experiments utilizing two publicly available datasets suggest that TL-DDA is reliable.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"9 6","pages":"1643-1657"},"PeriodicalIF":7.5000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning With Document-Level Data Augmentation for Aspect-Level Sentiment Classification\",\"authors\":\"Xiaosai Huang;Jing Li;Jia Wu;Jun Chang;Donghua Liu\",\"doi\":\"10.1109/TBDATA.2023.3310267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aspect-level sentiment classification (ASC) seeks to reveal the emotional tendency of a designated aspect of a text. Some researchers have recently tried to exploit large amounts of document-level sentiment classification (DSC) data available to help improve the performance of ASC models through transfer learning. However, these studies often ignore the difference in sentiment distribution between document-level and aspect-level data without preprocessing the document-level knowledge. Our study provides a transfer learning with document-level data augmentation (TL-DDA) framework to transfer more accurate document-level knowledge to the ASC model by means of \\n<italic>document-level data augmentation</i>\\n and \\n<italic>attention fusion</i>\\n. First, we use \\n<italic>document data selection</i>\\n and \\n<italic>text concatenation</i>\\n to produce document-level data with various sentiment distributions. The augmented document data is then utilized for pre-training a well-designed DSC model. Finally, after \\n<italic>attention adjustment</i>\\n, we \\n<italic>fuse the word attention</i>\\n obtained from this DSC model into the ASC model. Results of experiments utilizing two publicly available datasets suggest that TL-DDA is reliable.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"9 6\",\"pages\":\"1643-1657\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10234704/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10234704/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

方面级情感分类(ASC)旨在揭示文本中指定方面的情感倾向。最近,一些研究人员试图利用大量的文档级情感分类(DSC)数据,通过迁移学习来帮助提高ASC模型的性能。然而,这些研究往往忽略了文档级和方面级数据之间情感分布的差异,没有对文档级知识进行预处理。我们的研究提供了一个具有文档级数据增强(TL-DDA)框架的迁移学习,通过文档级数据增强和注意力融合将更准确的文档级知识转移到ASC模型中。首先,我们使用文档数据选择和文本连接来生成具有各种情感分布的文档级数据。然后利用增强的文档数据对设计良好的DSC模型进行预训练。最后,经过注意调整,我们将DSC模型得到的单词注意融合到ASC模型中。利用两个公开数据集的实验结果表明,TL-DDA是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfer Learning With Document-Level Data Augmentation for Aspect-Level Sentiment Classification
Aspect-level sentiment classification (ASC) seeks to reveal the emotional tendency of a designated aspect of a text. Some researchers have recently tried to exploit large amounts of document-level sentiment classification (DSC) data available to help improve the performance of ASC models through transfer learning. However, these studies often ignore the difference in sentiment distribution between document-level and aspect-level data without preprocessing the document-level knowledge. Our study provides a transfer learning with document-level data augmentation (TL-DDA) framework to transfer more accurate document-level knowledge to the ASC model by means of document-level data augmentation and attention fusion . First, we use document data selection and text concatenation to produce document-level data with various sentiment distributions. The augmented document data is then utilized for pre-training a well-designed DSC model. Finally, after attention adjustment , we fuse the word attention obtained from this DSC model into the ASC model. Results of experiments utilizing two publicly available datasets suggest that TL-DDA is reliable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
期刊最新文献
Guest Editorial TBD Special Issue on Graph Machine Learning for Recommender Systems Reliable Data Augmented Contrastive Learning for Sequential Recommendation Denoised Graph Collaborative Filtering via Neighborhood Similarity and Dynamic Thresholding Higher-Order Smoothness Enhanced Graph Collaborative Filtering AKGNN: Attribute Knowledge Graph Neural Networks Recommendation for Corporate Volunteer Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1