Seq2CASE:弱监督序列对推荐的评论方面评分估计

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Big Data Pub Date : 2023-09-07 DOI:10.1109/TBDATA.2023.3313028
Chien-Tse Cheng;Yu-Hsun Lin;Chung-Shou Liao
{"title":"Seq2CASE:弱监督序列对推荐的评论方面评分估计","authors":"Chien-Tse Cheng;Yu-Hsun Lin;Chung-Shou Liao","doi":"10.1109/TBDATA.2023.3313028","DOIUrl":null,"url":null,"abstract":"Online users’ feedback has numerous text comments to enrich the review quality on mainstream platforms, such as Yelp and Google Maps. Reading through numerous review comments to speculate the important aspects is tedious and time-consuming. Apparently, there is a huge gap between the numerous commentary text and the crucial aspects for users’ preferences. In this study, we proposed a weakly supervised framework called Sequence to Commentary Aspect Score Estimation (Seq2CASE) to estimate the vital aspect scores from the review comments, since the ground truth of the aspect score is seldom available. The aspect score estimation from Seq2CASE is close to the actual aspect scoring; precisely, the average Mean Absolute Error (MAE) is less than 0.4 for a 5-point grading scale. The performance of Seq2CASE is comparable to or even better than the state-of-the-art supervised approaches in recommendation tasks. We expect this work to be a stepping stone that can inspire more unsupervised studies working on this important but relatively underexploited research.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"9 6","pages":"1670-1682"},"PeriodicalIF":7.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seq2CASE: Weakly Supervised Sequence to Commentary Aspect Score Estimation for Recommendation\",\"authors\":\"Chien-Tse Cheng;Yu-Hsun Lin;Chung-Shou Liao\",\"doi\":\"10.1109/TBDATA.2023.3313028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online users’ feedback has numerous text comments to enrich the review quality on mainstream platforms, such as Yelp and Google Maps. Reading through numerous review comments to speculate the important aspects is tedious and time-consuming. Apparently, there is a huge gap between the numerous commentary text and the crucial aspects for users’ preferences. In this study, we proposed a weakly supervised framework called Sequence to Commentary Aspect Score Estimation (Seq2CASE) to estimate the vital aspect scores from the review comments, since the ground truth of the aspect score is seldom available. The aspect score estimation from Seq2CASE is close to the actual aspect scoring; precisely, the average Mean Absolute Error (MAE) is less than 0.4 for a 5-point grading scale. The performance of Seq2CASE is comparable to or even better than the state-of-the-art supervised approaches in recommendation tasks. We expect this work to be a stepping stone that can inspire more unsupervised studies working on this important but relatively underexploited research.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"9 6\",\"pages\":\"1670-1682\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10243499/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10243499/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在线用户的反馈有大量的文字评论,丰富了Yelp、谷歌Maps等主流平台的评论质量。通过阅读大量的评论来推测重要的方面是乏味和耗时的。显然,大量的评论文本与用户偏好的关键方面之间存在巨大差距。在本研究中,我们提出了一个弱监督框架,称为序列到评论方面分数估计(Seq2CASE),以从评论评论中估计重要方面分数,因为方面分数的基本真相很少可用。Seq2CASE的方面得分估计接近实际方面得分;准确地说,5分制评分的平均绝对误差(MAE)小于0.4。Seq2CASE的性能与推荐任务中最先进的监督方法相当,甚至更好。我们希望这项工作能够成为一个垫脚石,可以激发更多的无监督研究,致力于这一重要但相对未被充分利用的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seq2CASE: Weakly Supervised Sequence to Commentary Aspect Score Estimation for Recommendation
Online users’ feedback has numerous text comments to enrich the review quality on mainstream platforms, such as Yelp and Google Maps. Reading through numerous review comments to speculate the important aspects is tedious and time-consuming. Apparently, there is a huge gap between the numerous commentary text and the crucial aspects for users’ preferences. In this study, we proposed a weakly supervised framework called Sequence to Commentary Aspect Score Estimation (Seq2CASE) to estimate the vital aspect scores from the review comments, since the ground truth of the aspect score is seldom available. The aspect score estimation from Seq2CASE is close to the actual aspect scoring; precisely, the average Mean Absolute Error (MAE) is less than 0.4 for a 5-point grading scale. The performance of Seq2CASE is comparable to or even better than the state-of-the-art supervised approaches in recommendation tasks. We expect this work to be a stepping stone that can inspire more unsupervised studies working on this important but relatively underexploited research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
期刊最新文献
Guest Editorial TBD Special Issue on Graph Machine Learning for Recommender Systems Reliable Data Augmented Contrastive Learning for Sequential Recommendation Denoised Graph Collaborative Filtering via Neighborhood Similarity and Dynamic Thresholding Higher-Order Smoothness Enhanced Graph Collaborative Filtering AKGNN: Attribute Knowledge Graph Neural Networks Recommendation for Corporate Volunteer Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1