F. Reinaldo, Md. Anishur Rahman, Carlos F. Alves, A. Malucelli, Rui Camacho
{"title":"机器学习支持肾移植决策","authors":"F. Reinaldo, Md. Anishur Rahman, Carlos F. Alves, A. Malucelli, Rui Camacho","doi":"10.1145/1722024.1722079","DOIUrl":null,"url":null,"abstract":"Organ transplantation is a highly complex decision process that requires expert decisions. The major problem in a transplantation procedure is the possibility of the receiver's immune system attack and destroy the transplanted tissue. It is therefore of capital importance to find a donor with the highest possible compatibility with the receiver, and thus reduce rejection. Finding a good donor is not a straight-forward task because a complex network of relations exists between the immunological and the clinical variables that influence the receiver's acceptance of the transplanted organ. Currently the process of analysis of these variables involves a careful study by the clinical transplant team. The number and complexity of causal dependencies among variables make the manual process very slow. In this paper we assess the usefulness of Machine Learning algorithms as a tool to improve and speed up the decisions of a transplant team. We achieve that objective by analysing past real cases and constructing models as set of rules. Such models are accurate and understandable by experts.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":"1 1","pages":"48"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722079","citationCount":"6","resultStr":"{\"title\":\"Machine learning support for kidney transplantation decision making\",\"authors\":\"F. Reinaldo, Md. Anishur Rahman, Carlos F. Alves, A. Malucelli, Rui Camacho\",\"doi\":\"10.1145/1722024.1722079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organ transplantation is a highly complex decision process that requires expert decisions. The major problem in a transplantation procedure is the possibility of the receiver's immune system attack and destroy the transplanted tissue. It is therefore of capital importance to find a donor with the highest possible compatibility with the receiver, and thus reduce rejection. Finding a good donor is not a straight-forward task because a complex network of relations exists between the immunological and the clinical variables that influence the receiver's acceptance of the transplanted organ. Currently the process of analysis of these variables involves a careful study by the clinical transplant team. The number and complexity of causal dependencies among variables make the manual process very slow. In this paper we assess the usefulness of Machine Learning algorithms as a tool to improve and speed up the decisions of a transplant team. We achieve that objective by analysing past real cases and constructing models as set of rules. Such models are accurate and understandable by experts.\",\"PeriodicalId\":39379,\"journal\":{\"name\":\"In Silico Biology\",\"volume\":\"1 1\",\"pages\":\"48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/1722024.1722079\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Silico Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1722024.1722079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1722024.1722079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Machine learning support for kidney transplantation decision making
Organ transplantation is a highly complex decision process that requires expert decisions. The major problem in a transplantation procedure is the possibility of the receiver's immune system attack and destroy the transplanted tissue. It is therefore of capital importance to find a donor with the highest possible compatibility with the receiver, and thus reduce rejection. Finding a good donor is not a straight-forward task because a complex network of relations exists between the immunological and the clinical variables that influence the receiver's acceptance of the transplanted organ. Currently the process of analysis of these variables involves a careful study by the clinical transplant team. The number and complexity of causal dependencies among variables make the manual process very slow. In this paper we assess the usefulness of Machine Learning algorithms as a tool to improve and speed up the decisions of a transplant team. We achieve that objective by analysing past real cases and constructing models as set of rules. Such models are accurate and understandable by experts.
In Silico BiologyComputer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍:
The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.