一种评价有序序列的新方法:在microRNA靶标预测中的应用

Q2 Medicine In Silico Biology Pub Date : 2010-02-15 DOI:10.1145/1722024.1722067
Debarka Sengupta, S. Bandyopadhyay, U. Maulik
{"title":"一种评价有序序列的新方法:在microRNA靶标预测中的应用","authors":"Debarka Sengupta, S. Bandyopadhyay, U. Maulik","doi":"10.1145/1722024.1722067","DOIUrl":null,"url":null,"abstract":"Sensitivity and specificity are the most widely used statistics for measuring the performance of a binary classification test. They stand vastly meaningful for variety of use cases where the classifying tests are affordable. But unfortunately, there is a legion of problems arriving from different streams of natural sciences where the screening test is too expensive to render for all the predicted objects. Thus, the trend has been for scientists to calculate the sensitivity and the specificity of a binary classification test based on a handful of experimentally proven facts, which is theoretically uncertain. In this article a novel measure is proposed that assigns importance to multiple ordered lists, taking into account the share of majority voted ranked pairs of elements a list contains. A real life bioinformatic application is demonstrated in the domain of microRNA target prediction where a number of algorithms exist. Using the proposed measure, we aim to assign certain weight to each algorithm that conveys its reliability with respect to the rest.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":"8 1","pages":"37"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722067","citationCount":"6","resultStr":"{\"title\":\"A novel measure for evaluating an ordered list: application in microRNA target prediction\",\"authors\":\"Debarka Sengupta, S. Bandyopadhyay, U. Maulik\",\"doi\":\"10.1145/1722024.1722067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensitivity and specificity are the most widely used statistics for measuring the performance of a binary classification test. They stand vastly meaningful for variety of use cases where the classifying tests are affordable. But unfortunately, there is a legion of problems arriving from different streams of natural sciences where the screening test is too expensive to render for all the predicted objects. Thus, the trend has been for scientists to calculate the sensitivity and the specificity of a binary classification test based on a handful of experimentally proven facts, which is theoretically uncertain. In this article a novel measure is proposed that assigns importance to multiple ordered lists, taking into account the share of majority voted ranked pairs of elements a list contains. A real life bioinformatic application is demonstrated in the domain of microRNA target prediction where a number of algorithms exist. Using the proposed measure, we aim to assign certain weight to each algorithm that conveys its reliability with respect to the rest.\",\"PeriodicalId\":39379,\"journal\":{\"name\":\"In Silico Biology\",\"volume\":\"8 1\",\"pages\":\"37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/1722024.1722067\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Silico Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1722024.1722067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1722024.1722067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 6

摘要

灵敏度和特异性是最广泛使用的统计量,以衡量一个二元分类测试的性能。它们对于分类测试负担得起的各种用例来说意义重大。但不幸的是,有大量的问题来自不同的自然科学流,其中筛选测试过于昂贵,无法渲染所有预测对象。因此,科学家们的趋势是根据少数实验证明的事实来计算二元分类测试的灵敏度和特异性,这些事实在理论上是不确定的。在这篇文章中,提出了一种新的方法来分配重要性的多个有序列表,考虑到多数投票排序对的元素列表包含的份额。现实生活中的生物信息学应用在microRNA靶标预测领域得到了证明,其中存在许多算法。使用提出的度量,我们的目标是为每个算法分配一定的权重,以传达其相对于其他算法的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel measure for evaluating an ordered list: application in microRNA target prediction
Sensitivity and specificity are the most widely used statistics for measuring the performance of a binary classification test. They stand vastly meaningful for variety of use cases where the classifying tests are affordable. But unfortunately, there is a legion of problems arriving from different streams of natural sciences where the screening test is too expensive to render for all the predicted objects. Thus, the trend has been for scientists to calculate the sensitivity and the specificity of a binary classification test based on a handful of experimentally proven facts, which is theoretically uncertain. In this article a novel measure is proposed that assigns importance to multiple ordered lists, taking into account the share of majority voted ranked pairs of elements a list contains. A real life bioinformatic application is demonstrated in the domain of microRNA target prediction where a number of algorithms exist. Using the proposed measure, we aim to assign certain weight to each algorithm that conveys its reliability with respect to the rest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
In Silico Biology
In Silico Biology Computer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍: The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.
期刊最新文献
Modelling speciation: Problems and implications. Where Do CABs Exist? Verification of a specific region containing concave Actin Bundles (CABs) in a 3-Dimensional confocal image. scAN1.0: A reproducible and standardized pipeline for processing 10X single cell RNAseq data. Modeling and characterization of inter-individual variability in CD8 T cell responses in mice. Cancer immunoediting: A game theoretical approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1