{"title":"带非抛物性对纳米SOI MOSFET阈值电压的影响","authors":"Y. Omura","doi":"10.1155/2016/6068171","DOIUrl":null,"url":null,"abstract":"This paper reconsiders the mathematical formulation of the conventional nonparabolic band model and proposes a model of the effective mass of conduction band electrons including the nonparabolicity of the conduction band. It is demonstrated that this model produces realistic results for a sub-10-nm-thick Si layer surrounded by an SiO2 layer. The major part of the discussion is focused on the low-dimensional electron system confined with insulator barriers. To examine the feasibility of our consideration, the model is applied to the threshold voltage of nanoscale SOI FinFETs and compared to prior experimental results. This paper also addresses a model of the effective mass of valence band holes assuming the nonparabolic condition.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/6068171","citationCount":"1","resultStr":"{\"title\":\"Impact of Band Nonparabolicity on Threshold Voltage of Nanoscale SOI MOSFET\",\"authors\":\"Y. Omura\",\"doi\":\"10.1155/2016/6068171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reconsiders the mathematical formulation of the conventional nonparabolic band model and proposes a model of the effective mass of conduction band electrons including the nonparabolicity of the conduction band. It is demonstrated that this model produces realistic results for a sub-10-nm-thick Si layer surrounded by an SiO2 layer. The major part of the discussion is focused on the low-dimensional electron system confined with insulator barriers. To examine the feasibility of our consideration, the model is applied to the threshold voltage of nanoscale SOI FinFETs and compared to prior experimental results. This paper also addresses a model of the effective mass of valence band holes assuming the nonparabolic condition.\",\"PeriodicalId\":43355,\"journal\":{\"name\":\"Active and Passive Electronic Components\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2016/6068171\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Active and Passive Electronic Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/6068171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/6068171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Impact of Band Nonparabolicity on Threshold Voltage of Nanoscale SOI MOSFET
This paper reconsiders the mathematical formulation of the conventional nonparabolic band model and proposes a model of the effective mass of conduction band electrons including the nonparabolicity of the conduction band. It is demonstrated that this model produces realistic results for a sub-10-nm-thick Si layer surrounded by an SiO2 layer. The major part of the discussion is focused on the low-dimensional electron system confined with insulator barriers. To examine the feasibility of our consideration, the model is applied to the threshold voltage of nanoscale SOI FinFETs and compared to prior experimental results. This paper also addresses a model of the effective mass of valence band holes assuming the nonparabolic condition.
期刊介绍:
Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.