{"title":"标准迁移率模型在纳米FD-SOI mosfet TCAD模拟中的应用和局限性","authors":"A. Ciprut, A. Chelly, A. Karsenty","doi":"10.1155/2015/460416","DOIUrl":null,"url":null,"abstract":"TCAD tools have been largely improved in the last decades in order to support both process and device complementary simulations which are usually based on continuously developed models following the technology progress. In this paper, we compare between experimental and TCAD simulated results of two kinds of nanoscale devices: ultrathin body (UTB) and nanoscale Body (NSB) SOI-MOSFET devices, sharing the same W/L ratio but having a channel thickness ratio of 10 : 1 (46 nm and 4.6 nm, resp.). The experimental transfer I-V characteristics were found to be surprisingly different by several orders of magnitude. We analyzed this result by considering the severe mobility degradation and the influence of a large gate voltage dependent series resistance (). TCAD tools do not usually consider to be either channel thickness or gate voltage dependent. After observing a clear discrepancy between the mobility values extracted from our measurements and those modeled by the available TCAD models, we propose a new semiempirical approach to model the transfer characteristics.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/460416","citationCount":"5","resultStr":"{\"title\":\"Usage and Limitation of Standard Mobility Models for TCAD Simulation of Nanoscaled FD-SOI MOSFETs\",\"authors\":\"A. Ciprut, A. Chelly, A. Karsenty\",\"doi\":\"10.1155/2015/460416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TCAD tools have been largely improved in the last decades in order to support both process and device complementary simulations which are usually based on continuously developed models following the technology progress. In this paper, we compare between experimental and TCAD simulated results of two kinds of nanoscale devices: ultrathin body (UTB) and nanoscale Body (NSB) SOI-MOSFET devices, sharing the same W/L ratio but having a channel thickness ratio of 10 : 1 (46 nm and 4.6 nm, resp.). The experimental transfer I-V characteristics were found to be surprisingly different by several orders of magnitude. We analyzed this result by considering the severe mobility degradation and the influence of a large gate voltage dependent series resistance (). TCAD tools do not usually consider to be either channel thickness or gate voltage dependent. After observing a clear discrepancy between the mobility values extracted from our measurements and those modeled by the available TCAD models, we propose a new semiempirical approach to model the transfer characteristics.\",\"PeriodicalId\":43355,\"journal\":{\"name\":\"Active and Passive Electronic Components\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2015-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2015/460416\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Active and Passive Electronic Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/460416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/460416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Usage and Limitation of Standard Mobility Models for TCAD Simulation of Nanoscaled FD-SOI MOSFETs
TCAD tools have been largely improved in the last decades in order to support both process and device complementary simulations which are usually based on continuously developed models following the technology progress. In this paper, we compare between experimental and TCAD simulated results of two kinds of nanoscale devices: ultrathin body (UTB) and nanoscale Body (NSB) SOI-MOSFET devices, sharing the same W/L ratio but having a channel thickness ratio of 10 : 1 (46 nm and 4.6 nm, resp.). The experimental transfer I-V characteristics were found to be surprisingly different by several orders of magnitude. We analyzed this result by considering the severe mobility degradation and the influence of a large gate voltage dependent series resistance (). TCAD tools do not usually consider to be either channel thickness or gate voltage dependent. After observing a clear discrepancy between the mobility values extracted from our measurements and those modeled by the available TCAD models, we propose a new semiempirical approach to model the transfer characteristics.
期刊介绍:
Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.