Min-jae Oh, M. Roh, Sung-Woo Park, Do-Hyun Chun, S. Myung
{"title":"基于大数据的海上结构合同设计管道材料分析框架","authors":"Min-jae Oh, M. Roh, Sung-Woo Park, Do-Hyun Chun, S. Myung","doi":"10.12989/OSE.2019.9.1.079","DOIUrl":null,"url":null,"abstract":". The material analysis of an offshore structure is generally conducted in the contract design phase for the price quotation of a new offshore project. This analysis is conducted manually by an engineer, which is time-consuming and can lead to inaccurate results, because the data size from previous projects is too large, and there are so many materials to consider. In this study, the piping materials in an offshore structure are analyzed for contract design using a big data framework. The big data technologies used include HDFS (Hadoop Distributed File System) for data saving, Hive and HBase for the database to handle the saved data, Spark and Kylin for data processing, and Zeppelin for user interface and visualization. The analyzed results show that the proposed big data framework can reduce the efforts put toward contract design in the estimation of the piping material cost.","PeriodicalId":44219,"journal":{"name":"Ocean Systems Engineering-An International Journal","volume":"9 1","pages":"79-95"},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Big data-based piping material analysis framework in offshore structure for contract design\",\"authors\":\"Min-jae Oh, M. Roh, Sung-Woo Park, Do-Hyun Chun, S. Myung\",\"doi\":\"10.12989/OSE.2019.9.1.079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The material analysis of an offshore structure is generally conducted in the contract design phase for the price quotation of a new offshore project. This analysis is conducted manually by an engineer, which is time-consuming and can lead to inaccurate results, because the data size from previous projects is too large, and there are so many materials to consider. In this study, the piping materials in an offshore structure are analyzed for contract design using a big data framework. The big data technologies used include HDFS (Hadoop Distributed File System) for data saving, Hive and HBase for the database to handle the saved data, Spark and Kylin for data processing, and Zeppelin for user interface and visualization. The analyzed results show that the proposed big data framework can reduce the efforts put toward contract design in the estimation of the piping material cost.\",\"PeriodicalId\":44219,\"journal\":{\"name\":\"Ocean Systems Engineering-An International Journal\",\"volume\":\"9 1\",\"pages\":\"79-95\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Systems Engineering-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/OSE.2019.9.1.079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Systems Engineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/OSE.2019.9.1.079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Big data-based piping material analysis framework in offshore structure for contract design
. The material analysis of an offshore structure is generally conducted in the contract design phase for the price quotation of a new offshore project. This analysis is conducted manually by an engineer, which is time-consuming and can lead to inaccurate results, because the data size from previous projects is too large, and there are so many materials to consider. In this study, the piping materials in an offshore structure are analyzed for contract design using a big data framework. The big data technologies used include HDFS (Hadoop Distributed File System) for data saving, Hive and HBase for the database to handle the saved data, Spark and Kylin for data processing, and Zeppelin for user interface and visualization. The analyzed results show that the proposed big data framework can reduce the efforts put toward contract design in the estimation of the piping material cost.
期刊介绍:
The OCEAN SYSTEMS ENGINEERING focuses on the new research and development efforts to advance the understanding of sciences and technologies in ocean systems engineering. The main subject of the journal is the multi-disciplinary engineering of ocean systems. Areas covered by the journal include; * Undersea technologies: AUVs, submersible robot, manned/unmanned submersibles, remotely operated underwater vehicle, sensors, instrumentation, measurement, and ocean observing systems; * Ocean systems technologies: ocean structures and structural systems, design and production, ocean process and plant, fatigue, fracture, reliability and risk analysis, dynamics of ocean structure system, probabilistic dynamics analysis, fluid-structure interaction, ship motion and mooring system, and port engineering; * Ocean hydrodynamics and ocean renewable energy, wave mechanics, buoyancy and stability, sloshing, slamming, and seakeeping; * Multi-physics based engineering analysis, design and testing: underwater explosions and their effects on ocean vehicle systems, equipments, and surface ships, survivability and vulnerability, shock, impact and vibration; * Modeling and simulations; * Underwater acoustics technologies.