共底物对MEC中苯并噻唑降解的影响

Huandi Huang, Jie Ding, Liu Xianshu, Guojun Xie, Dihui Song
{"title":"共底物对MEC中苯并噻唑降解的影响","authors":"Huandi Huang, Jie Ding, Liu Xianshu, Guojun Xie, Dihui Song","doi":"10.11916/J.ISSN.1005-9113.2016.05.009","DOIUrl":null,"url":null,"abstract":"Due to its persistence and bio-toxicity, benzothiazole (BTH) cannot be biodegraded efficiently. Recent work has shown that removal rates of biorefractory organics can be enhanced by the addition of co-substrates. In this work, ethanol, acetate, propionate and butyrate were added as co-substrates in order to promote the degradation of BTH in microbial electrolysis cell (MEC). By probing the changes in degradation rates of BTH in the presence of different co-substrates, it was observed that all the four co-substrates can enhance the BTH degradation in MEC, both the efficiency (E) and the rate (R). It was also found that acetate is more effective than others, which made the degradation efficiency of BTH up to 90% with acetate-C at 350 mg/L (measuring by the carbon content of co-substrate, the same below), within 6 h and the degradation rate of BTH arrived 0.001 2/(mg·h). The microbacteria in MEC have also been influenced by different co-substrates. This metabolism of the co-substrates enables the microbacteria on anode to generate ATP and thus grow to ensure the microbacteria activity. Therefore, this work showed that the addition of co-substrates such as acetate can be a novel and efficient approach for improving the elimination of BTH from wastewaters by MEC system.","PeriodicalId":39923,"journal":{"name":"Journal of Harbin Institute of Technology (New Series)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Co-substrate on Degradation of Benzothiazole in MEC\",\"authors\":\"Huandi Huang, Jie Ding, Liu Xianshu, Guojun Xie, Dihui Song\",\"doi\":\"10.11916/J.ISSN.1005-9113.2016.05.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its persistence and bio-toxicity, benzothiazole (BTH) cannot be biodegraded efficiently. Recent work has shown that removal rates of biorefractory organics can be enhanced by the addition of co-substrates. In this work, ethanol, acetate, propionate and butyrate were added as co-substrates in order to promote the degradation of BTH in microbial electrolysis cell (MEC). By probing the changes in degradation rates of BTH in the presence of different co-substrates, it was observed that all the four co-substrates can enhance the BTH degradation in MEC, both the efficiency (E) and the rate (R). It was also found that acetate is more effective than others, which made the degradation efficiency of BTH up to 90% with acetate-C at 350 mg/L (measuring by the carbon content of co-substrate, the same below), within 6 h and the degradation rate of BTH arrived 0.001 2/(mg·h). The microbacteria in MEC have also been influenced by different co-substrates. This metabolism of the co-substrates enables the microbacteria on anode to generate ATP and thus grow to ensure the microbacteria activity. Therefore, this work showed that the addition of co-substrates such as acetate can be a novel and efficient approach for improving the elimination of BTH from wastewaters by MEC system.\",\"PeriodicalId\":39923,\"journal\":{\"name\":\"Journal of Harbin Institute of Technology (New Series)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Harbin Institute of Technology (New Series)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11916/J.ISSN.1005-9113.2016.05.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Harbin Institute of Technology (New Series)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11916/J.ISSN.1005-9113.2016.05.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

苯并噻唑(BTH)由于其持久性和生物毒性,不能有效地进行生物降解。最近的研究表明,通过添加共底物可以提高生物难降解有机物的去除率。本研究以乙醇、乙酸、丙酸和丁酸盐为共底物,促进微生物电解池(MEC)中BTH的降解。通过对不同共底物存在时BTH降解率变化的研究,发现4种共底物均能提高MEC中BTH的降解效率(E)和速率(R),同时发现乙酸酯对BTH的降解效果较好,在350mg /L的乙酸酯- c条件下,BTH的降解效率可达90%(以共底物碳含量测定,下同)。6 h内BTH的降解率达到0.001 2/(mg·h)。MEC中的微生物也受到不同共底物的影响。这种共底物的代谢使阳极上的微生物产生ATP,从而生长以保证微生物的活性。因此,本研究表明,在MEC系统中添加乙酸盐等共底物可能是一种新的、有效的方法,可以提高废水中BTH的去除率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Co-substrate on Degradation of Benzothiazole in MEC
Due to its persistence and bio-toxicity, benzothiazole (BTH) cannot be biodegraded efficiently. Recent work has shown that removal rates of biorefractory organics can be enhanced by the addition of co-substrates. In this work, ethanol, acetate, propionate and butyrate were added as co-substrates in order to promote the degradation of BTH in microbial electrolysis cell (MEC). By probing the changes in degradation rates of BTH in the presence of different co-substrates, it was observed that all the four co-substrates can enhance the BTH degradation in MEC, both the efficiency (E) and the rate (R). It was also found that acetate is more effective than others, which made the degradation efficiency of BTH up to 90% with acetate-C at 350 mg/L (measuring by the carbon content of co-substrate, the same below), within 6 h and the degradation rate of BTH arrived 0.001 2/(mg·h). The microbacteria in MEC have also been influenced by different co-substrates. This metabolism of the co-substrates enables the microbacteria on anode to generate ATP and thus grow to ensure the microbacteria activity. Therefore, this work showed that the addition of co-substrates such as acetate can be a novel and efficient approach for improving the elimination of BTH from wastewaters by MEC system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
2515
期刊最新文献
Numerical simulation of nitrogen and phosphorus vertical transportation in subsurface drainage area Design of Sixth-Order Lowpass Elliptic Switched-Capacitor Filter Model-free Adaptive Control for Spacecraft Attitude Type Synthesis of fully-Decoupled 2T2R Parallel Mechanisms Based on Driven-Chain Principle Isolation, Identification of Bacillus Thuringiensis/ Cereus and Its Enhancement on Protein Wastewater Treatment by Rhodobacter Sphaeroides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1