氧化还原酶在帕金森病中的作用:聚焦于glutaredoxin。

W. Johnson, A. Wilson-Delfosse, Shu G. Chen, J. Mieyal
{"title":"氧化还原酶在帕金森病中的作用:聚焦于glutaredoxin。","authors":"W. Johnson, A. Wilson-Delfosse, Shu G. Chen, J. Mieyal","doi":"10.14800/TTND.790","DOIUrl":null,"url":null,"abstract":"Parkinson's disease (PD) results from the loss of dopaminergic neurons in the substantia nigra portion of the midbrain, and represents the second most common neurodegenerative disease in the world. Although the etiology of PD is currently unclear, oxidative stress and redox dysfunction are generally understood to play key roles in PD pathogenesis and progression. Aging and environmental factors predispose cells to adverse effects of redox changes. In addition to these factors, genetic mutations linked to PD have been observed to disrupt the redox balance. Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with autosomal dominant PD, and several of these mutations have also been shown to increase the levels of reactive oxygen species in cells. Anti-oxidant proteins are necessary to restore the redox balance and maintain cell viability. Over the past decade studies have started to demonstrate the critical importance for redox proteins mediating neuronal protection in models of PD. This commentary briefly describes some of the factors hypothesized to contribute to PD, specifically regarding the redox changes that occur in PD. Dysregulation of redox proteins in PD is highlighted by some of the work detailing the roles of peroxiredoxin-3 and thioredoxin-1 in models of PD. In an attempt to generate novel therapies for PD, several potent inhibitors of LRRK2 have been developed. The use of these compounds, both as tools to understand the biology of LRRK2 and as potential therapeutic strategies is also discussed. This mini-review then provides a historical prospective on the discovery and characterization of glutaredoxin (Grx1), and briefly describes current understanding of the role of Grx1 in PD. The review concludes by highlighting our recent publication describing the novel role for Grx1 in mediating dopaminergic neuronal protection both in vitro and in vivo.","PeriodicalId":90750,"journal":{"name":"Therapeutic targets for neurological diseases","volume":"2 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"The roles of redox enzymes in Parkinson's disease: Focus on glutaredoxin.\",\"authors\":\"W. Johnson, A. Wilson-Delfosse, Shu G. Chen, J. Mieyal\",\"doi\":\"10.14800/TTND.790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parkinson's disease (PD) results from the loss of dopaminergic neurons in the substantia nigra portion of the midbrain, and represents the second most common neurodegenerative disease in the world. Although the etiology of PD is currently unclear, oxidative stress and redox dysfunction are generally understood to play key roles in PD pathogenesis and progression. Aging and environmental factors predispose cells to adverse effects of redox changes. In addition to these factors, genetic mutations linked to PD have been observed to disrupt the redox balance. Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with autosomal dominant PD, and several of these mutations have also been shown to increase the levels of reactive oxygen species in cells. Anti-oxidant proteins are necessary to restore the redox balance and maintain cell viability. Over the past decade studies have started to demonstrate the critical importance for redox proteins mediating neuronal protection in models of PD. This commentary briefly describes some of the factors hypothesized to contribute to PD, specifically regarding the redox changes that occur in PD. Dysregulation of redox proteins in PD is highlighted by some of the work detailing the roles of peroxiredoxin-3 and thioredoxin-1 in models of PD. In an attempt to generate novel therapies for PD, several potent inhibitors of LRRK2 have been developed. The use of these compounds, both as tools to understand the biology of LRRK2 and as potential therapeutic strategies is also discussed. This mini-review then provides a historical prospective on the discovery and characterization of glutaredoxin (Grx1), and briefly describes current understanding of the role of Grx1 in PD. The review concludes by highlighting our recent publication describing the novel role for Grx1 in mediating dopaminergic neuronal protection both in vitro and in vivo.\",\"PeriodicalId\":90750,\"journal\":{\"name\":\"Therapeutic targets for neurological diseases\",\"volume\":\"2 2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Therapeutic targets for neurological diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14800/TTND.790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic targets for neurological diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/TTND.790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

帕金森病(PD)是由中脑黑质部分多巴胺能神经元的丧失引起的,是世界上第二大常见的神经退行性疾病。虽然目前PD的病因尚不清楚,但氧化应激和氧化还原功能障碍在PD的发病和进展中起着关键作用。衰老和环境因素使细胞易受氧化还原变化的不利影响。除了这些因素外,与PD相关的基因突变也被观察到会破坏氧化还原平衡。富亮氨酸重复激酶2 (LRRK2)突变与常染色体显性PD相关,其中一些突变也被证明会增加细胞中活性氧的水平。抗氧化蛋白是恢复氧化还原平衡和维持细胞活力所必需的。在过去的十年中,研究已经开始证明氧化还原蛋白在PD模型中介导神经元保护的关键重要性。本文简要介绍了一些可能导致PD的因素,特别是PD中发生的氧化还原变化。一些详细介绍过氧化物还毒素-3和硫氧还毒素-1在PD模型中的作用的工作强调了PD中氧化还原蛋白的失调。为了产生新的PD治疗方法,已经开发了几种有效的LRRK2抑制剂。这些化合物的使用,既可以作为了解LRRK2生物学的工具,也可以作为潜在的治疗策略。这篇小综述随后提供了glutaredoxin (Grx1)的发现和表征的历史前景,并简要描述了Grx1在PD中的作用的当前理解。综述最后强调了我们最近发表的文章,描述了Grx1在体外和体内介导多巴胺能神经元保护中的新作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The roles of redox enzymes in Parkinson's disease: Focus on glutaredoxin.
Parkinson's disease (PD) results from the loss of dopaminergic neurons in the substantia nigra portion of the midbrain, and represents the second most common neurodegenerative disease in the world. Although the etiology of PD is currently unclear, oxidative stress and redox dysfunction are generally understood to play key roles in PD pathogenesis and progression. Aging and environmental factors predispose cells to adverse effects of redox changes. In addition to these factors, genetic mutations linked to PD have been observed to disrupt the redox balance. Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with autosomal dominant PD, and several of these mutations have also been shown to increase the levels of reactive oxygen species in cells. Anti-oxidant proteins are necessary to restore the redox balance and maintain cell viability. Over the past decade studies have started to demonstrate the critical importance for redox proteins mediating neuronal protection in models of PD. This commentary briefly describes some of the factors hypothesized to contribute to PD, specifically regarding the redox changes that occur in PD. Dysregulation of redox proteins in PD is highlighted by some of the work detailing the roles of peroxiredoxin-3 and thioredoxin-1 in models of PD. In an attempt to generate novel therapies for PD, several potent inhibitors of LRRK2 have been developed. The use of these compounds, both as tools to understand the biology of LRRK2 and as potential therapeutic strategies is also discussed. This mini-review then provides a historical prospective on the discovery and characterization of glutaredoxin (Grx1), and briefly describes current understanding of the role of Grx1 in PD. The review concludes by highlighting our recent publication describing the novel role for Grx1 in mediating dopaminergic neuronal protection both in vitro and in vivo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SRSF1-dependent nuclear export of C9ORF72 repeat transcripts: targeting toxic gain-of-functions induced by protein sequestration as a selective therapeutic strategy for neuroprotection Insights into abnormal sphingolipid metabolism in multiple sclerosis: targeting ceramide biosynthesis as a unique therapeutic strategy The synthesis of polyhydroxy sterone 2β,3α,5-trihydroxy-5α-androst-6-one and its neuroprotection Addictive neurons. Insights into abnormal sphingolipid metabolism in multiple sclerosis: targeting ceramide biosynthesis as a unique therapeutic strategy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1