Joanna Ridgeway, Jennifer Kane, Ember Morrissey, Hayden Starcher, Edward Brzostek
{"title":"根系选择性地分解枯枝落叶以开采氮并构建新的土壤碳。","authors":"Joanna Ridgeway, Jennifer Kane, Ember Morrissey, Hayden Starcher, Edward Brzostek","doi":"10.1111/ele.14331","DOIUrl":null,"url":null,"abstract":"<p>Plant–microbe interactions in the rhizosphere shape carbon and nitrogen cycling in soil organic matter (SOM). However, there is conflicting evidence on whether these interactions lead to a net loss or increase of SOM. In part, this conflict is driven by uncertainty in how living roots and microbes alter SOM formation or loss in the field. To address these uncertainties, we traced the fate of isotopically labelled litter into SOM using root and fungal ingrowth cores incubated in a <i>Miscanthus x giganteus</i> field. Roots stimulated litter decomposition, but balanced this loss by transferring carbon into aggregate associated SOM. Further, roots selectively mobilized nitrogen from litter without additional carbon release. Overall, our findings suggest that roots mine litter nitrogen and protect soil carbon.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14331","citationCount":"0","resultStr":"{\"title\":\"Roots selectively decompose litter to mine nitrogen and build new soil carbon\",\"authors\":\"Joanna Ridgeway, Jennifer Kane, Ember Morrissey, Hayden Starcher, Edward Brzostek\",\"doi\":\"10.1111/ele.14331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plant–microbe interactions in the rhizosphere shape carbon and nitrogen cycling in soil organic matter (SOM). However, there is conflicting evidence on whether these interactions lead to a net loss or increase of SOM. In part, this conflict is driven by uncertainty in how living roots and microbes alter SOM formation or loss in the field. To address these uncertainties, we traced the fate of isotopically labelled litter into SOM using root and fungal ingrowth cores incubated in a <i>Miscanthus x giganteus</i> field. Roots stimulated litter decomposition, but balanced this loss by transferring carbon into aggregate associated SOM. Further, roots selectively mobilized nitrogen from litter without additional carbon release. Overall, our findings suggest that roots mine litter nitrogen and protect soil carbon.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14331\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14331\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14331","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Roots selectively decompose litter to mine nitrogen and build new soil carbon
Plant–microbe interactions in the rhizosphere shape carbon and nitrogen cycling in soil organic matter (SOM). However, there is conflicting evidence on whether these interactions lead to a net loss or increase of SOM. In part, this conflict is driven by uncertainty in how living roots and microbes alter SOM formation or loss in the field. To address these uncertainties, we traced the fate of isotopically labelled litter into SOM using root and fungal ingrowth cores incubated in a Miscanthus x giganteus field. Roots stimulated litter decomposition, but balanced this loss by transferring carbon into aggregate associated SOM. Further, roots selectively mobilized nitrogen from litter without additional carbon release. Overall, our findings suggest that roots mine litter nitrogen and protect soil carbon.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.