阿尔及利亚奥雷什地区森林火灾风险建模和制图

IF 0.5 Q3 GEOGRAPHY Geoadria Pub Date : 2020-04-15 DOI:10.15291/geoadria.2846
S. Rahmani, Hassen Benmassoud
{"title":"阿尔及利亚奥雷什地区森林火灾风险建模和制图","authors":"S. Rahmani, Hassen Benmassoud","doi":"10.15291/geoadria.2846","DOIUrl":null,"url":null,"abstract":"The objective of this study is to modeling and mapping the Forest fire risk in the region of Aures situated in Northeast of Algeria, through the application of multi-criteria analysis methods to integrate geographic information systems (GIS) and remote sensing. The methodology is based on a weighted linear combination of three parameters that influence the initiation and propagation of a forest fire. These are vegetation, topography and anthropogenic index. The result is a vulnerability map classified into four classes according to pixel values. very high risk class forms 18,28% of the study area, high risk class forms 42,42%, moderate risk class forms 5,24% and 34,05% of the area is low risk.","PeriodicalId":42640,"journal":{"name":"Geoadria","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15291/geoadria.2846","citationCount":"3","resultStr":"{\"title\":\"Modeling and mapping forest fire risk in the region of Aures (Algeria)\",\"authors\":\"S. Rahmani, Hassen Benmassoud\",\"doi\":\"10.15291/geoadria.2846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to modeling and mapping the Forest fire risk in the region of Aures situated in Northeast of Algeria, through the application of multi-criteria analysis methods to integrate geographic information systems (GIS) and remote sensing. The methodology is based on a weighted linear combination of three parameters that influence the initiation and propagation of a forest fire. These are vegetation, topography and anthropogenic index. The result is a vulnerability map classified into four classes according to pixel values. very high risk class forms 18,28% of the study area, high risk class forms 42,42%, moderate risk class forms 5,24% and 34,05% of the area is low risk.\",\"PeriodicalId\":42640,\"journal\":{\"name\":\"Geoadria\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15291/geoadria.2846\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoadria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15291/geoadria.2846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoadria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15291/geoadria.2846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 3

摘要

本研究的目的是通过应用多标准分析方法,将地理信息系统(GIS)和遥感相结合,对阿尔及利亚东北部奥雷雷斯地区的森林火灾风险进行建模和制图。该方法基于影响森林火灾发生和蔓延的三个参数的加权线性组合。它们是植被、地形和人为指数。结果是一个漏洞图,根据像素值分为四类。极高风险区占研究区域的18.28%,高风险区占研究区域的42.42%,中等风险区占研究区域的5.24%,低风险区占研究区域的34.05%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and mapping forest fire risk in the region of Aures (Algeria)
The objective of this study is to modeling and mapping the Forest fire risk in the region of Aures situated in Northeast of Algeria, through the application of multi-criteria analysis methods to integrate geographic information systems (GIS) and remote sensing. The methodology is based on a weighted linear combination of three parameters that influence the initiation and propagation of a forest fire. These are vegetation, topography and anthropogenic index. The result is a vulnerability map classified into four classes according to pixel values. very high risk class forms 18,28% of the study area, high risk class forms 42,42%, moderate risk class forms 5,24% and 34,05% of the area is low risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoadria
Geoadria GEOGRAPHY-
CiteScore
0.80
自引率
0.00%
发文量
8
审稿时长
22 weeks
期刊最新文献
Materijalna baština antifašizma u južnoj Istri kao temelj razvoja memorijalnog turizma Trendovi kretanja mortaliteta u Hrvatskoj u prva dva desetljeća 21. stoljeća Prepoznatljivost i potencijal tradicijskih i umjetničkih obrta kao baštine Zagreba Applying two methodologies of an integrated coastal vulnerability index (ICVI) to future sea-level rise Patterns of international migration among rular households in Edo state, Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1