{"title":"基于格子玻尔兹曼建模的无膜液液微分离器设计","authors":"F. Strniša, P. Žnidaršič-Plazl, I. Plazl","doi":"10.15255/cabeq.2020.1781","DOIUrl":null,"url":null,"abstract":"The benefits of continuous processing and the challenges related to the integration with efficient downstream units for end-to-end manufacturing have spurred the development of efficient miniaturized continuously-operated separators. Membrane-free microseparators with specifically positioned internal structures subjecting fluids to a capillary pressure gradient have been previously shown to enable efficient gas-liquid separation. Here we present initial studies on the model-based design of a liquid-liquid microseparator with pillars of various diameters between two plates. For the optimization of in silico separator performance, mesoscopic lattice-Boltzmann modeling was used. Simulation results at various conditions revealed the possibility to improve the separation of two liquids by changing the geometrical characteristics of the microseparator.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"34 1","pages":"73-78"},"PeriodicalIF":1.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lattice Boltzmann Modeling-based Design of a Membrane-free Liquid-liquid Microseparator\",\"authors\":\"F. Strniša, P. Žnidaršič-Plazl, I. Plazl\",\"doi\":\"10.15255/cabeq.2020.1781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The benefits of continuous processing and the challenges related to the integration with efficient downstream units for end-to-end manufacturing have spurred the development of efficient miniaturized continuously-operated separators. Membrane-free microseparators with specifically positioned internal structures subjecting fluids to a capillary pressure gradient have been previously shown to enable efficient gas-liquid separation. Here we present initial studies on the model-based design of a liquid-liquid microseparator with pillars of various diameters between two plates. For the optimization of in silico separator performance, mesoscopic lattice-Boltzmann modeling was used. Simulation results at various conditions revealed the possibility to improve the separation of two liquids by changing the geometrical characteristics of the microseparator.\",\"PeriodicalId\":9765,\"journal\":{\"name\":\"Chemical and Biochemical Engineering Quarterly\",\"volume\":\"34 1\",\"pages\":\"73-78\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biochemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.15255/cabeq.2020.1781\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2020.1781","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Lattice Boltzmann Modeling-based Design of a Membrane-free Liquid-liquid Microseparator
The benefits of continuous processing and the challenges related to the integration with efficient downstream units for end-to-end manufacturing have spurred the development of efficient miniaturized continuously-operated separators. Membrane-free microseparators with specifically positioned internal structures subjecting fluids to a capillary pressure gradient have been previously shown to enable efficient gas-liquid separation. Here we present initial studies on the model-based design of a liquid-liquid microseparator with pillars of various diameters between two plates. For the optimization of in silico separator performance, mesoscopic lattice-Boltzmann modeling was used. Simulation results at various conditions revealed the possibility to improve the separation of two liquids by changing the geometrical characteristics of the microseparator.
期刊介绍:
The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required.
The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review).
The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing.
Editor and Editorial board make the final decision about acceptance of a manuscript.
Page charges are excluded.