由回收橄榄核制成的生物基建筑材料

IF 3.3 Q3 ENERGY & FUELS MRS Energy & Sustainability Pub Date : 2021-09-01 DOI:10.1557/s43581-021-00006-8
Djamila Boukhelkhal, Mohamed Guendouz, Alexandra Bourdot, Hanane Cheriet, Kaouther Messaoudi
{"title":"由回收橄榄核制成的生物基建筑材料","authors":"Djamila Boukhelkhal, Mohamed Guendouz, Alexandra Bourdot, Hanane Cheriet, Kaouther Messaoudi","doi":"10.1557/s43581-021-00006-8","DOIUrl":null,"url":null,"abstract":"Highlights Use of olive core wastes as sand in self-compacting mortar (SCM). The behavior of SCM with olive core waste is evaluated by the physico-mechanical and thermal properties of different mixes. The bulk density and thermal conductivity are improved by using of olive core wastes. Abstract The recycling of organic wastes in the field of civil engineering is a very important process as long as the products to be obtained are not subjected to stringent quality standards. This research is a part of the general policy of saving energy and protecting the environment. Its aim is to study the possibility of developing a new insulating building material by recycling vegetable waste from the olive processing industry (olive core) that discarded in nature. After having been sorted, dried and then extruded in the form of grains, these wastes are incorporated as fine aggregate (sand) in the manufacturing of self-compacting mortar (SCM) by substituting the mass of sand with different percentages (10, 20, 30 40 and 50%). The physico-mechanical and thermal properties of the obtained SCMs are analyzed and compared to the control. The results of this study show a decrease in density and compressive strength of SCM by increasing the content of olive core wastes. However, the thermal properties of SCM are improved through replacing sand by such wastes, which could allow using olive waste core based SCM in various types of nonstructural components with intriguing insulating properties. Graphic abstract","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Elaboration of bio-based building materials made from recycled olive core\",\"authors\":\"Djamila Boukhelkhal, Mohamed Guendouz, Alexandra Bourdot, Hanane Cheriet, Kaouther Messaoudi\",\"doi\":\"10.1557/s43581-021-00006-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highlights Use of olive core wastes as sand in self-compacting mortar (SCM). The behavior of SCM with olive core waste is evaluated by the physico-mechanical and thermal properties of different mixes. The bulk density and thermal conductivity are improved by using of olive core wastes. Abstract The recycling of organic wastes in the field of civil engineering is a very important process as long as the products to be obtained are not subjected to stringent quality standards. This research is a part of the general policy of saving energy and protecting the environment. Its aim is to study the possibility of developing a new insulating building material by recycling vegetable waste from the olive processing industry (olive core) that discarded in nature. After having been sorted, dried and then extruded in the form of grains, these wastes are incorporated as fine aggregate (sand) in the manufacturing of self-compacting mortar (SCM) by substituting the mass of sand with different percentages (10, 20, 30 40 and 50%). The physico-mechanical and thermal properties of the obtained SCMs are analyzed and compared to the control. The results of this study show a decrease in density and compressive strength of SCM by increasing the content of olive core wastes. However, the thermal properties of SCM are improved through replacing sand by such wastes, which could allow using olive waste core based SCM in various types of nonstructural components with intriguing insulating properties. Graphic abstract\",\"PeriodicalId\":44802,\"journal\":{\"name\":\"MRS Energy & Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Energy & Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1557/s43581-021-00006-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Energy & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/s43581-021-00006-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 12

摘要

利用橄榄核废料作为砂在自密实砂浆(SCM)。通过不同混合料的物理力学性能和热性能来评价橄榄核废弃物的SCM性能。利用橄榄核废渣可以提高堆密度和导热系数。在土木工程领域,有机废物的回收利用是一个非常重要的过程,只要所获得的产品没有严格的质量标准。这项研究是节能环保总方针的一部分。其目的是研究通过回收自然界中丢弃的橄榄加工业(橄榄核)的蔬菜废料来开发一种新的绝缘建筑材料的可能性。这些废弃物经过分选、干燥后以颗粒的形式挤压,通过不同比例(10%、20%、30%、40%和50%)的沙子代替质量,作为细骨料(砂)掺入自密实砂浆(SCM)的制造中。分析了所获得的SCMs的物理力学和热性能,并与对照进行了比较。研究结果表明,随着橄榄核废弃物含量的增加,SCM的密度和抗压强度降低。然而,通过用这些废物代替沙子,SCM的热性能得到了改善,这可以使基于橄榄废物芯的SCM在各种具有有趣绝缘性能的非结构部件中使用。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elaboration of bio-based building materials made from recycled olive core
Highlights Use of olive core wastes as sand in self-compacting mortar (SCM). The behavior of SCM with olive core waste is evaluated by the physico-mechanical and thermal properties of different mixes. The bulk density and thermal conductivity are improved by using of olive core wastes. Abstract The recycling of organic wastes in the field of civil engineering is a very important process as long as the products to be obtained are not subjected to stringent quality standards. This research is a part of the general policy of saving energy and protecting the environment. Its aim is to study the possibility of developing a new insulating building material by recycling vegetable waste from the olive processing industry (olive core) that discarded in nature. After having been sorted, dried and then extruded in the form of grains, these wastes are incorporated as fine aggregate (sand) in the manufacturing of self-compacting mortar (SCM) by substituting the mass of sand with different percentages (10, 20, 30 40 and 50%). The physico-mechanical and thermal properties of the obtained SCMs are analyzed and compared to the control. The results of this study show a decrease in density and compressive strength of SCM by increasing the content of olive core wastes. However, the thermal properties of SCM are improved through replacing sand by such wastes, which could allow using olive waste core based SCM in various types of nonstructural components with intriguing insulating properties. Graphic abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MRS Energy & Sustainability
MRS Energy & Sustainability ENERGY & FUELS-
CiteScore
6.40
自引率
2.30%
发文量
36
期刊最新文献
MXenes vs MBenes: Demystifying the materials of tomorrow’s carbon capture revolution Materials scarcity during the clean energy transition: Myths, challenges, and opportunities Carbon footprint inventory using life cycle energy analysis Advanced hybrid combustion systems as a part of efforts to achieve carbon neutrality of the vehicles Assessment of the penetration impact of renewable-rich electrical grids: The Jordanian grid as a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1